Essay

Writing a deadwood-free manuscript: tips from a Russian translator

Dmitry Tychinin
Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia

Introduction

Deadwood is “the unnecessarily difficult, unnecessarily long, or simply unnecessary phrases and words that clog the arteries of professional writing” [1]. Deadwood language is needlessly verbose, circumlocutory, and hedgy [2,3], and authors who use it decrease the impact of their work.

I am a Russian speaker of English who translates and edits for Russian researchers. I always strive to eliminate redundancy from my own writing and translations, and as an editor, I try to remove it from my clients’ manuscripts. Herein, I would like to share some of my experiences revising deadwood in Russian English scientific writing. Although the article is based on Russian examples, it may also be of interest to non-Russians, as deadwood is a problem for all writers, regardless of their culture [4].

The ability to identify superfluous words comes with time and effort. Anyone writing for publication, especially in a non-native language, should understand that the degree to which a writer acquires this skill depends directly on his or her will to improve. This article offers tips for such improvement.

Material

Most examples I cite were taken from drafts I had edited at my institute of employment. A minority came from randomly chosen Russian life science articles published between 1994 and 2017 in the English versions of domestic journals or in foreign English-language journals. None of those articles had been translated or edited by me. The examples were edited for length, grammar, and clarity. Russian words were transliterated online (www.translit.net) by using the Library of Congress system.

Problems and Remedies

Representative types of deadwood in Russian English are circumlocutions, wasteful sentence openers (e.g., It is established that), unnecessary descriptors (e.g., the method of . . . [name of method] or the process of . . . [name of process]), needless nominalizations, and tautologies. These are looked at below. In addition, a list of words and phrases that cause deadwood is included in Appendix 1.
Avoid circumlocutions

As journal space is limited, editors favor succinct writing. Style authorities, therefore, unanimously advise authors to write as directly and pointedly as possible. One way to do that is to avoid roundabout language, known as circumlocution.

Circumlocution per se is not as bad as it sounds; it is just one among many rhetorical devices [3]. But it does affect readability when used needlessly. Russian English is highly circumlocutory, partly through literal translation and partly through copy-pasting.

Here are some examples of how you can simplify circumlocutions: calluses competent for plant regeneration → calluses able to regenerate plants; is characterized by the presence of → has; reduce to disappearance → eliminate; taking into account the fact that → because; the investigation of this problem is in progress in our laboratory → we are investigating this problem further; the method involves the measurement of → the method measures; the possibility of efficient assessment of cell culture heterogeneity by direct methods is severely limited → direct methods assess cell culture heterogeneity much more poorly than indirect methods; we examined 32 inbred lines . . . with regard to six isoenzyme systems → six isoenzyme systems were examined in 32 inbred lines.

Once you have completed your manuscript, do not rush to submit it. Go over it line by line and think, how could I write that in simpler English? If the original has v znachitel’noi stepeni, do not write to a considerable degree; write considerably. Resist the temptation of sounding fancy in favor of being clear.

Delete introductory deadwood

Perhaps the quickest way to improve an English translation of a Russian manuscript is to delete wordy sentence openers (“introductory deadwood” [5]), for example, It is known (it is common knowledge) that; It should be noted (taken into account) that; It was (has been) shown (demonstrated, established) that; and It was found that.

The fewer such expressions, the better. They are not really needed to present findings and ideas. That can, and should, be done directly—just state what is known or has been found. Introductory deadwood is particularly inappropriate if a reference is supplied. Here is an example: Moreover, [it was shown that] fish tend to avoid microhabitats with a high abundance of argulids (Smith and Brown, 1998).

If you insist on including an introductory phrase to start a sentence, try to make it brief, as follows: According to the results of the conducted experiments it can be concluded that → In conclusion (or: We conclude that); The results of the study give grounds to believe that → We believe that. It should be noted that (or, preferably, the shorter Of note) may be allowed if what is called to the readers’ attention is indeed important.

Eliminate needless descriptors

By such descriptors, I mean words that unnecessarily identify other words (e.g., studied by [the method of] gas chromatography; the [process of] degradation of lignin was investigated). After all, it is self-evident that gas chromatography is a method or that lignin degradation is a process. Do your readers need to be told that? Further examples are as follows: [the phenomenon of] neoteny has been discovered; [the question (issue, problem) of] global warming is on the agenda; at [a distance of] ~142 bp upstream of AZOBR_p1160045; at [a wavelength of] 278 nm; at [concentrations of] 0.3-1.0 μg/mL; P. polymyxa belongs to [the group of] plant-growth-promoting rhizobacteria; researchers in [the field of] photosynthesis.

Again, everyone knows that global warming is a problem or that 278 nm denotes a wavelength. The words in brackets convey no useful information; they merely increase your article’s word count. Therefore, do not hesitate to edit them out.

Needless descriptors also occur without the preposition of, for example, maize [plant] transformation; processed with [the program Microsoft Office] Excel 2010 (Microsoft Corp., USA); synthesis of cDNA by [the] reverse transcription [reaction]; tyrosinase [enzyme] activity.

Avoid unnecessary nominalizations

When a verb or an adjective is made into a noun, it is “nominalized” (e.g., implement → implementation or applicable → applicability). Scientific writing is heavily nominalized [6]; however, excessive nominalization breeds wordiness and leads writers to overuse of. Here is an example: Among the aims of this study was the optimization of the steps of film fabrication, sorption conditions, and sample volume, as well as the determination of the output characteristics of the developed sensor.

That sentence is anything but good English. It is long, awkward, and full of nouns. In addition, determination is imprecise here; a better choice would be measurement. Therefore, improve readability (and precision) by using the corresponding verbs. We sought to optimize film fabrication, sorption conditions, and sample volume, as well as to measure the sensor’s output characteristics.

In unedited drafts, the research object is often stated as The purpose of the present investigation was examination of . . . That is not proper English either. A careful writer would cut it down to We examined . . .

Like probably all non-native English speakers, Russians feel free to copy “acceptable” nominalizations from published descriptions of experiments. Here are some examples: Transfer of bacterial DNA was carried out; Bleeding of the animals was made; Construction of phylogenetic trees was performed.

Here, too, readability can be improved by using a verb that specifically describes the action of the sentence: Bacterial DNA
was transferred; The animals were bled; Phylogenetic trees were constructed.

Remove tautologies

Tautologies, or maslo maslianoe “buttery butter,” as they are colloquially called in Russia, are useless repetitions of a word or of the same concept in different words. Manifest tautologies are easy to repair, as follows: antifungal activity against phytopathogenic fungi → (delete the antifungal); defense response reactions → (change to either “defense responses” or “defense reactions”); genetic problems in the field of genetics → (delete the genetic); produced an activating effect on the activities of the enzymes → . . . activated the enzymes; the particle size also affects toxic effects → . . . also affects toxicity.

Hidden tautologies are harder to spot. Consider these examples: [bacterial (microbial)] cells of Pseudomonas putida; [bio]available to plants; biofilm formation by Azospirillum is important in plant-[bacterium] interactions (change to “biofilm formation is important in plant-Azospirillum interactions”); gold nanoparticles were used as a [nano]carrier; [metabolic] pathways for the biodegradation of these compounds; nanoparticle [cyto]toxicity to cells; [phyto]toxic to rice; to detect deformed root hairs in [the root system of] this species.

All of the above are examples of tautologies, because there are no plant cells in the bacterium P. putida; all plants are biological organisms; Azospirillum is a bacterium; nanoparticles are inherently a nanocarrier; biodegradation pathways are by definition metabolic; cyto- indicates a cell, and phyto- indicates a plant; and root hairs are in the root system.

Nonetheless, hidden tautologies should be handled with care. For instance, soil phytoremediation with alfalfa is acceptable in the title of a report that includes phytoremediation among its keywords. On the other hand, soils phytoremieiated with alfalfa calls for revision; use remediated or a synonym (e.g., cleaned up).

Conclusion

Becoming a concise writer takes a lot of learning. Maxim Gorky, the great Soviet writer, said, “I love learning more than I do teaching”; the same is true of me. I am a devoted learner. I love English, and I enjoy writing in English. I have written this article for like-minded people, who enjoy learning and are keen to improve their English writing skills just because they love English. Those people, I hope, will appreciate my comments and suggestions.

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

References

Appendix 1. Words and phrases that cause deadwood

These are too numerous to list comprehensively, but here is a selection.

Action, effect, influence:
- have a plant-growth-promoting effect on → promote the growth of
- minimize stress [influence] on cells
- protection from [the action of] extreme factors
- resistance to the toxic action of copper → resistance to copper toxicity

Allow:
- the statistical analysis of the data obtained allowed us to detect a pronounced correlation → statistical analysis showed a pronounced correlation
- these data allow one to suggest (conclude) → we suggest (conclude) (or just state your suggestion or conclusion)

Amount, number:
- a certain amount of bound water → some bound water
- an increasing number of studies → more and more studies
- large amounts of biomass → copious biomass

Basis:
- the basis for such a choice [of cells] was the finding that → these cells were chosen because
- constructed on the basis of the data published in → . . . from the data . . .

Case:
- in many cases → often
- in most cases → most often
- in several (some) cases → sometimes
- in the case of → with, for, in (depending on context)

Conditions:
- under [conditions of] severe nitrogen starvation
- under chronic cadmium stress [conditions]

Demonstrate, exhibit, show:
- demonstrate high adaptation to → adapt highly to
- other cultures . . . exhibited no biosynthesis of rugulovasines → . . . did not synthesize rugulovasines
- showed activity against → was active against

One of the . . .:
- growth and development of one of the relic strains, *P. variabile* VKM FW-806 → . . . of a relic strain, *P. variabile* VKM FW-806
- is considered to be one of the factors restraining progress in this field → restraints progress in this field
- one of the documented functions of plant phenols is the protection of tissues against . . . plant phenols protect tissues against . . .

Representative:
- among [the representatives of] the Poaceae [family]
- representatives of the bacterial genus *Rhodococcus* → *Rhodococcus* bacteria
- these compounds have been detected in some representatives of the genus *Penicillium* belonging to two subgenera, *Penicillium* and *Biverticillium* → . . . detected in *Penicillium* and *Biverticillium*, two subgenera of the genus *Penicillium*
- were representatives of the genera *Rhodotorula*, *Sporobolomyces*, and *Cryptococcus* → were from the genera . . .

Role:
- a dynamic structure playing a crucial role in cell division → a dynamic structure crucial for . . . (or: to . . .)
- bacteria play an essential role in the adaptation of the plants to stress → bacteria are essential for plant adaptation to stress
- carbon plays an active role in → carbon is active in

Stage:
- at [the stage of] preclinical testing
- at the subsequent stages → subsequently
- culturing of somatic calluses *in vitro* is [an] important [stage] in
- in the early growth stages → early in growth, in early growth

Study:
- [Study of the] Regulation of . . . (article title)
- after 24 h, all the strains [under study] formed aggregates
- have been [studied and] reported
- interest in [the study of] processes occurring during plastic deformation