Aims and scope

Science Editing (Sci Ed) is the official journal of the Korean Council of Science Editors (http://kcse.org) and Council of Asian Science Editors (http://asianeditor.org). It aims to improve the culture and health of human beings by promoting the quality of editing and publishing scientific, technical, and medical journals. Expected readers are editors, publishers, reviewers, and authors of the journals around the world, however, specially focused to those in Asia. Since scholarly journals in Asia are mostly published by the academic societies, universities, or non-profit organizations, Sci Ed is sought to play a role in journal development. The number of publications from Asia is increasing rapidly and overshoots that of other continents, meanwhile, the number of international journals and highly appreciated journals is yet to be coming forward. It is task of Asian editors to pledge the journal quality and broaden the visibility and accessibility. Therefore, its scope includes the followings in the field of science, technology, and medicine.

- Policy of journal editing
- Data mining on the editing and publishing
- Systematic review on medical journal publishing and editing
- Research ethics and medical ethics including clinical registration, statement of human and animal health protection, and conflict of interest
- Publication ethics: fabrication, falsification, plagiarism, duplicate publication, and authorship
- CrossCheck
- Legal issue in journal publishing
- Peer review process
- Reporting guideline for medical journals
- Medical and scientific literature databases
- Advanced information technology applicable to journal editing and publishing including PubMed Central schema, journal article tag suite schema, Digital Object Identifier, CrossMark, ORCID, datacite, QR code, and App
- International standard of journal editing and publishing including International Committee of Medical Journal Editors’ Recommendations
- Reference styles including Vancouver (NLM) style, APA style, IEEE style, and ACS style
- Digital publishing in the web and App
- Education and training of editors, reviewers, and authors
- Manuscript editing
- Journal evaluation
- Bibliometrics and scientometrics
- Finance of journal publishing
- History of scholarly journal
- Copyright and Creative Commons License
- Open access and public access approaches

Its publication type includes original articles, reviews, case studies, essays, editorials, meeting reports, book reviews, announcement, correspondences, and video clips. Other types are also negotiable with the editorial board. All unsolicited articles are subject to peer review. Commissioned articles are reviewed by the Editorial Board.

About the journal

It launched in February 20, 2014 with volume 1 and number 1. It is to be published biannually. Supplement issues may be published. Total or a part of the articles in this journal are abstracted in ScienceCentral, Directory of Open Access Journal, Google Scholar, and CrossRef. Circulation number of print copies is 500 per issue. Full text is freely available from: http://www.escienceediting.org or http://e-se.org. It is the member journal of Council of Science Editors, the Association of Learned and Professional Society Publishers, and European Association of Science Editors. There is no page charge or article processing charge of author side. This journal has been supported by the Korean Federation of Science and Technology Societies, the Government of the Republic of Korea since 2013.
Editorial Board

Editor-in-Chief
Kihong Kim
Ajou University, Korea

Associate Editor
Jung A Kim
Hanyang University, Korea

Editorial Board
Hye-Min Cho
Infolumi, Korea
Dong Soo Han
Hanyang University, Korea
Dong-Wook Kim
Ewha Womans University, Korea
Banh Tien Long
Hanoi University of Science and Technology, Vietnam
Joan Marsh
Elsevier, UK
Sam T. Mathew
BIOCON Research Ltd, India
Yukari Matsuo
Hosei University, Japan
Ana-Maria Simundic
Zagreb University, Croatia
Pippa Smart
PSP Consulting, UK
Ramanathan Subramaniam
Nanyang Technological University, Singapore
Evelyn Mae
Teccson-Mendoza University of the Philippines Los Baños, Philippines
Elizabeth Wager
Sideview, UK
Komang Gede Wirayawan
Bogor Agricultural University, Indonesia
Cheol Heui Yun
Seoul National University, Korea
David Lee
University of Iowa, USA
Frank-T. Krell
Denver Museum of Nature & Science, USA
Alexandr Shevtsov
International Academy of Theoretical & Applied Sciences, Kazakhstan

Ethics Editor
Eun Seong Hwang
University of Seoul, Korea

Statistics Editor
Yong Gyu Park
The Catholic University of Korea, Korea

Manuscript Editors
Jae Hwa Chang
Infolumi, Korea
Jisoo Yoon
Korean Council of Scienc Editors, Korea

Layout Editor
Hyeon Jung Park
Academya, Korea
Da Hye Lee
Academya, Korea

Website and JATS XML File Producer
Soojeong Kim
M2community, Korea
Jeonghee Im
M2community, Korea

Advisory Board Members
Jong Kyu Ha
Seoul National University, Korea
Jung-II Jin
Korea University, Korea
Hyungsun Kim
Inha University, Korea
Soo Young Kim
Hallym University, Korea
Sang-Wook Yi
Hanyang University, Korea

© Korean Council of Science Editors (http://kcse.org)
Editorial
53 Some thoughts on authorship
 Kihong Kim

Original Articles
55 Opinions of Korean science editors on open access policies, editorial difficulties, and government’s support for publishing
 Sun Huh, Hye-Min Cho, Hyungsun Kim

59 Topics of major current interest in scholarly editing and publishing based on the content analysis of selected journals
 Yeonok Chung

Case Studies
63 Creating Journal Article Tag Suite extensible markup language from Japanese language articles and automatic typesetting
 using extensible stylesheet language transformations
 Hidehiko Nakanishi, Toshiyuki Naganawa, Soichi Tokizane, Tsuyoshi Yamamoto

73 Scientific and academic journals in the Philippines: status and challenges
 Evelyn Mae Tecson-Mendoza

Training Material
79 CrossRef tools for small publishers
 Rachael Lammey

Essays
86 Analysis of changing pattern of citation metrics of the Journal of Neurogastroenterology and Motility
 Gwang Ha Kim, Nayoung Kim

89 A call for greater editorial responsibilities
 Jaime A. Teixeira da Silva

92 Contributions of the comic strips on scientific articles
 Beom Sun Chung, Min Suk Chung
Meeting Report
96 One event, several perspectives: a reflection on the 2015 Council of Science Editors annual meeting
 Hyungsun Kim

Science Cartoon
100 Role playing
 Beom Sun Chung, Min Suk Chung

Addendum
103 Addendum: The Korean Journal of Internal Medicine’s long road to being listed in the Science Citation Index Expanded
 Chul Woo Yang

Corrigendum
104 Correction of the figure legend in the article
Some thoughts on authorship

Kihong Kim
Department of Physics, College of Natural Science, Ajou University, Suwon, Korea

In a recent science news report [1], it was stated that a physics paper with 5,154 authors, in which the list of the authors and their institutions took up 24 pages, had broken the record for the largest number of contributors to a single research article [2]. In this paper, the authors reported an experiment in the field of high energy particle physics performed by international collaborations involving a very large number of researchers. It has been common for several decades that many papers in that field have several hundred authors. More recently, there have appeared several papers with close to or over 3,000 authors [3-5]. In those papers, the authors are usually alphabetically ordered and no corresponding author is identified. This phenomenon of an extremely large number of authors for a single paper, which has been termed ‘hyper-authorship,’ can also be observed in biomedical research fields [6]. A recent paper in genomics has over 1,000 authors [7].

This report makes me ponder about the meaning of authorship. A natural question I have is whether all of these 5,154 people made sufficient contributions to be authors. The answer to this question inevitably involves some subjective judgement, even though I am sure that those working in experimental high energy physics would enthusiastically say yes. They would claim that every author made essential contributions without which the project was not possible. It is obvious that the way this kind of big science experiments are prepared and conducted is very different from conventional science research and has some similarity with the operation of big industrial companies.

Being a physicist myself, I can understand the situation and the rationale specific to experimental high energy physics. Nevertheless, I cannot avoid having an uncomfortable feeling about papers with several thousand authors. I think scientific papers are meant to be read not just by professionals in the same field but also by those in other fields and the intelligent general public. They also serve as historical records of important scientific discoveries. What kind of information does an alphabetical list of several thousand names provide to those readers? I would say, almost none. Of course, these authors need to get proper credit and recognition they deserve to develop their professional careers. The value of authorship in this case, however, is clearly different from that for a paper with a small number of authors. Recently in Korea, there has been much confusion when comparing the authorship in experimental high energy physics directly with those in other fields for competitive funding purposes.

I think the concept of contributorship proposed by Rennie et al. [8] makes a lot of sense in the present case. Instead of giving a lengthy author list at the beginning of a paper, they may write down the name of the collaboration as a single author and give a list of the names of co-
tributors classified by their specific contributions at the end of a paper, or provide it as a separate file in the case of an electronic journal. In that way, the list of names provides meaningful information to the readers and each contributor can get due credit for his or her contribution.

There are several other trends related to the authorship of scientific studies with which I also feel uncomfortable. One is the rise of the number of super-authors who publish an unreasonably large number of papers as co-authors. Another trend which is getting more and more popular recently is what may be called ‘co-first’ authorship, where the first few authors of a paper are explicitly designated as having contributed equally to the work. These phenomena bear a close relationship with the basic concept of authorship and the way research credits are distributed among participants. I will postpone the discussion of these to another opportunity.

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

References

1. Castelvecchi D. Physics paper sets record with more than 5,000 authors. Nature 2015 May 15 [Epub]. http://dx.doi.org/10.1038/nature.2015.17567
3. CMS and LHCb Collaborations. Observation of the rare \(B(s)(0) \rightarrow \mu^+\mu^- \) decay from the combined analysis of CMS and LHCb data. Nature 2015;522:68-72. http://dx.doi.org/10.1038/nature14474
Opinions of Korean science editors on open access policies, editorial difficulties, and government’s support for publishing

Sun Huh¹, Hye-Min Cho², Hyungsun Kim³

¹Department of Parasitology and Institute of Medical Education, College of Medicine, Hallym University, Chuncheon; ²Infolumi, Seongnam; ³School of Materials Engineering, Inha University, Incheon, Korea

Abstract
The Korean government has supported scholarly scientific journal publishing since 1971 through the Korean Federation of Science and Technologies (hereafter the Federation). To ensure that this funding is used as efficiently as possible, the views of science editors should be considered. This study measured the opinions of Korean science editors on open access policies, difficulties during editing, and the government's support for publishing. From November 28 to December 10 of 2013, web survey invitations were emailed to 368 journal editors listed by the Federation. The web survey tool Surveymonkey was used to create a questionnaire that consisted of ten items, including the research category for each journal. Out of the 368 editors, 82 responded to the survey (22.3%). Sixty-nine editors (84.1%) had already accepted the open access or free access policy. Of the 13 editors of journals without open/free access policies, seven hoped to adopt a policy within three years. The most difficult tasks in journal publishing were adding a journal to international databases, operating with an inadequate budget, and recruiting professional manuscript editors. Editors want the Federation to increase budgets to cover full-text extensible markup language production costs, to provide guidelines for adding journals to international databases, and to provide programs for training professional manuscript editors and a plagiarism detection system. Most science editors in Korea have already adopted an open/free access policy. Training professional manuscript editors, using plagiarism detection system, and producing full-text extensible markup language should be considered as important items for journal publishing support from the Federation.

Keywords
Journal publishing; Editor; Manuscript editor; Open access; Publishing cost
Introduction

Of 34 Organization for Economic Cooperation and Development countries, Korea is one of the two in which the government has supported scholarly journal publication. The other country to do so is Japan. Although the government’s support for journal publishing started in 1971 through the Korean Federation of Science and Technology Societies (KOFST), the caliber of many scientific, technical, and medical (STM) journals from Korea has not reached the top tier. In addition, the numbers of STM journals indexed in international citation databases such as Web of Science and Scopus were 108 and 194, respectively, as of March 2015. It is believed that STM journals from Korea have been underestimated in comparison to the international level of science and technology. KOFST supported 431 STM journals in 2015; its annual budget originates from the Korean government and was 5,000,000 US dollars in 2015. KOFST also has the task of assisting in the publication of journals with limited budgets, and editors and KOFST are encouraged to cooperate to promote journals to an international level. In this study, we aimed to provide KOFST with the opinion of editors as measured in an online questionnaire in 2013. To distribute limited funding among societies more efficiently, the opinions of editors were solicited. The viewpoints collated in the survey are expected to be taken into account in the policies of KOFST regarding allocation of funding for STM journal promotion.

Methods

The 368 editors of journals of KOFST member societies were contacted via email to request participation in the survey on November 28, 2013. Survey responses were collected from November 28 to December 10, 2013 using the web tool SurveyMonkey (https:// surveymonkey.com/). The survey questionnaire consisted of the following questions: 1) journal research topic category; 2) participation of journal in open or free access; 3) difficulties in journal editing; 4) support sought from KOFST; and 5) types of support selected from KOFST’s tailored support. Responses were binomial answers. Descriptive analysis was undertaken.

Results

Out of the 368 editors, 82 responded to the survey (22.3%). Respondents were from the following research categories: natural sciences (13 respondents), engineering (13), agriculture (27), medicine and health (27), and multi-disciplinary (2). Of the editors, 69 (84.1%) had accepted or would accept the need for an open access or free access policy. Of the 13 editors of journals without open access policies, seven hoped to adopt a policy within three years. Their reasons for not yet having adopted an open access or free access policy included the inability to create a website, a decline in the society’s income, publishing agreements with commercial printing companies, and the high cost of article processing charges for au-

Fig. 1. Response of 82 scientific, technical, and medical journal editors in Korea to the question “What are difficulties in journal editing?” surveyed from November 28 to December 10, 2013; Multiple choice is possible. XML, extensible markup language.
The most difficult tasks in journal publishing were adding a journal to international databases, operating with an inadequate budget, recruiting professional manuscript editors, recruiting peer reviewers, checking plagiarism and duplicate publications, dealing with a lack of submitted manuscripts, accessing high quality English translation and proofreading, manuscript editing, and working with extensible markup language (XML) production companies (Fig. 1). Editors anticipated the following support from KOFST: increase in supporting budgets that could cover full-text XML production costs, guidelines for adding journals to international databases, programs for training professional manuscript editors, supply of a plagiarism detection system and online submission system (Fig. 2). Editors’ favored tailored supports from KOFST were processes for indexing journal to international databases, full-text Journal Article Tag Suite (JATS) XML production, CrossCheck use, CrossMark, and FundRef XML production (Fig. 3).

Discussion

In the survey, 84.1% of STM journal editors accepted open access or free access policies because they wanted the dissemination of scientific information to be broad and rapid to the public. The editors also desired increased support from KOFST to improve the visibility and accessibility of their journals.
nation and frequent citation of internationally-circulated journals. This portion of open access policy was possible owing to the support to non-profit journal publishing provided by the government and scholarly societies. Since KOFST listed an open access policy as one of the evaluation items, most journals have followed an open access policy. The exact proportion of open access journals from Korea should be analyzed in the near future.

There are several procedures to employ in responding to the editors’ concerns. First, JATS XML, DOI CrossRef XML, CrossMark XML, FundRef XML, CrossCheck (a plagiarism detection program), and construction of a landing webpage can be used or produced with the budget provided by KOFST [1,2]. KOFST has asked academic societies to prioritize expenditures in these production areas, as they reflect recent STM online journal standards. CrossCheck is inexpensive and easy to use if a publisher becomes a member of CrossRef. Second, editors can obtain, from the Korean Association of Science Editors (KCSE) or the Korean Association of Medical Journal Editors (KAMJE), appropriate information and training opportunities on the following topics: professional editing; recent trends in journal publishing; guidelines for editing and publishing according to academic category; information on companies that provide English translation, proofreading, and manuscript editing; selection criteria and processes for inclusion in international indexing databases; activation of journal circulation locally and abroad; editors’ meetings according to academic category; next-generation models of journal publishing and marketing; and reference style according to academic category. Third, while an online submission system has some unavoidable cost, academic societies can employ a company in Korea to construct and maintain such a system at low cost, with a budget from KOFST. In addition to the commercial system, an online system provided by the National Research Foundation of Korea was another choice. Further, KCSE has decided to manage the certificate system of manuscript editors in Korea from 2015 to train and develop professional editors. Well-trained manuscript editors have been needed; however, the supply has not been sufficient because of a lack of training systems. This certificate system may now fulfill the editors’ needs.

An increase in the KOFST budget will be difficult to obtain immediately, as the government budget for research and development is also limited. Nevertheless, researchers and editors should request that the government and National Assembly increase the budget for STM journal publishing. Currently, the portion of support on journal publishing, including social science and humanities is 0.04% out of the government’s research and development budget of 17 billion US dollars in 2015. The following issues will also be difficult to resolve in the short term: the shortage of appropriate peer reviewers, an insufficient number of submitted articles, difficulties in recruitment of editorial board members, and disagreements with publishers (societies). Editorial board and society board members should frequently review these issues. Editors should have leadership and should develop themselves as problem-solving professional editors.

In conclusion, Most STM editors in Korea publish their journals with an open access or free access policy. The key issues for improvement are capacity for XML production, an increased budget, and more training opportunities. KOFST, KCSE, and KAMJE are in an ideal position to help editors with these issues.

Conflicts of interest

No potential conflict of interest relevant to this article was reported.

Acknowledgements

This work was supported by a research grant of the National Research Foundation of Korea (policy research-2013-003-academic infrastructure promotion) and the Hallym University Research Fund (HRF-G-2015-4).

References

Topics of major current interest in scholarly editing and publishing based on the content analysis of selected journals

Yeonok Chung
Department of Social Welfare, Jangan University, Hwaseong, Korea

Abstract
For the purpose of obtaining a concrete picture of the main issues related to modern scholarly editing and publishing, a content analysis of the recent issues of three international journals devoted to scholarly editing and publishing, which are Learned Publishing, Journal of Scholarly Publishing, and European Science Editing, has been performed. The main topics in each of the 273 articles published in those journals over recent three years have been identified and classified into broad categories. The result has shown that the two most popular topics are open access publishing and peer review process. Other non-traditional topics currently receiving a great attention include bibliometrics, publication ethics, information technology applicable to editing and publishing, digital publishing, and literature databases. In order to keep up with the rapidly-developing field of scholarly editing and publishing and develop a local journal into an international journal of a high standard, it is important to remain keen to the latest development related to these topics.

Keywords
Content analysis; European Science Editing; Journal of Scholarly Publishing; Learned Publishing; Scholarly editing and publishing

Introduction
The rapid spreading of the Internet and the development of advanced information technology have caused profound changes in many sectors of the human society. Nowadays, the ways scholars are collecting the information and conducting their researches and the processes of editing and publishing scholarly journals are vastly different from those of 20 years ago [1]. The number of scholarly journals, many of which are on-line and open-access journals, has increased sharply in recent years. Increasing use of technological advances, such as Internet search engines, electronic journal databases, Journal Article Tag Suite (JATS) extensible markup language (XML), and CrossCheck, is also changing the trends in journal editing and publishing.
Due to these advances, the issues confronting authors, editors, reviewers, publishers, librarians, and readers nowadays are diverse and complex, including publication ethics, peer review processes, journal metrics, and publication softwares. In order to obtain a more concrete picture of the main issues related to modern scholarly publishing, I have investigated the contents of the recent issues of three international journals devoted to scholarly editing and publishing, which are Learned Publishing (LP), Journal of Scholarly Publishing (JSP), and European Science Editing (ESE). I have identified the main topics in each of the over 270 articles published in those journals over recent three years and classified them into broad categories. The result has shown that the two most popular topics are open access publishing and peer review process. Other popular topics include bibliometrics and publication ethics.

Methods

For the purpose of grasping the main issues in contemporary scholarly editing and publishing, I have selected three journals devoted to the broad areas of editing and publishing, which are LP, JSP, and ESE. All of these journals are published four times a year. LP is published by the Association of Learned and Professional Society Publishers (ALPSP). Its authors are mainly professionals from the publishing houses and related service organizations. I have analyzed all articles published in volumes 24, 25, and 26 from 2011 to 2013, except for book reviews. The total number of articles analyzed was 120. JSP is published by the University of Toronto Press. University professors, researchers, and librarians are among the main contributors. I have analyzed all articles in volumes 43, 44, and 45 published from October, 2011 to July, 2014, except for book reviews. The total number of articles analyzed was 67. Finally, ESE is published by the European Association of Science Editors (EASE). Editors and manuscript editors of scientific and medical journals are among the main contributors. I have analyzed all articles published in volumes 37, 38, and 39 from 2011 to 2013, except for book reviews and meeting reports. The total number of articles analyzed was 86.

For the combined total of 273 articles, I have examined carefully their abstracts, keywords, and main sections and classified their main topics into some broad categories. The classification categories were selected by referring to the aims and scope sections of these and other related journals. The list includes the topics such as policy of journal editing, data mining, research ethics, publication ethics, authorship, legal issues in journal publishing, peer review process, scientific literature databases, information technology applicable to journal editing and publishing, international standards of journal editing and publishing, reference styles, digital publishing and e-books, education and training of editors, reviewers, and authors, manuscript editing, journal evaluation, bibliometrics and scientometrics, finance and business management of journal publishing, history of publishing, copyright and Creative Commons License, and open access publishing among many other things. For 256 articles, I have chosen one topic that represents the main content of each article most closely. For 17 articles, I have chosen two topics to represent the main content. For example, if an article is about the current situation of open access publishing in China, then I have assigned the article to two categories, namely open access publishing and editing and publishing in China.

Results

The results of the content analysis are summarized in four tables. In Table 1, I show the results of the analysis of the 120 articles published in LP. Seven articles were assigned to two topics, therefore the total number of articles appearing in the ta-

<table>
<thead>
<tr>
<th>Topic</th>
<th>No. of articles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open access publishing</td>
<td>20</td>
</tr>
<tr>
<td>Editing and publishing in China</td>
<td>12</td>
</tr>
<tr>
<td>Peer review process</td>
<td>11</td>
</tr>
<tr>
<td>Information technology applicable to editing and publishing</td>
<td>10</td>
</tr>
<tr>
<td>Finance and business management of publishing</td>
<td>8</td>
</tr>
<tr>
<td>Bibliometrics, scientometrics</td>
<td>6</td>
</tr>
<tr>
<td>Publication ethics, research ethics</td>
<td>6</td>
</tr>
<tr>
<td>Writing and submitting scientific manuscripts</td>
<td>6</td>
</tr>
<tr>
<td>Scientific literature databases</td>
<td>6</td>
</tr>
<tr>
<td>Journal usage statistics</td>
<td>4</td>
</tr>
<tr>
<td>Digital publishing, e-books</td>
<td>4</td>
</tr>
<tr>
<td>Information gathering pattern</td>
<td>4</td>
</tr>
<tr>
<td>Reference styles</td>
<td>2</td>
</tr>
<tr>
<td>Manuscript editing</td>
<td>2</td>
</tr>
<tr>
<td>Copyright, Creative Commons License</td>
<td>2</td>
</tr>
<tr>
<td>Learned association</td>
<td>2</td>
</tr>
<tr>
<td>Library management</td>
<td>2</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>127</td>
</tr>
</tbody>
</table>

The total number appearing in the table is 127 instead of 120 because seven articles were assigned to two topics.
ble is 127 instead of 120. The most popular topic in LP is open access publishing. There are 20 articles devoted to it, consisting 16.7% of the total 120 articles. Twelve articles consisting 10% of the total are on scholarly editing and publishing in China. It seems that the international publishing industry is greatly interested in the emerging Chinese publishing market. New directions in the peer review process and various kinds of advanced information technology applicable to journal editing and publishing are also generating a lot of interest. Other topics of wide interest include finance and business management of publishing, bibliometrics and scientometrics, publication ethics and research ethics, writing and submitting scientific manuscripts, and scientific literature databases. Multiple articles are also devoted to journal usage statistics, digital publishing and e-books, and information gathering patterns in the Internet age.

Next, in Table 2, I show the results of the analysis of the 67 articles published in JSP. Six articles were assigned to two topics, therefore the total number of articles appearing in the table is 73 instead of 67. The most popular topic in JSP is peer review process. There are 7 articles devoted to it, consisting 10.4% of the total 67 articles. In addition, topics such as digital publishing and e-books, open access publishing, history of publishing, finance and business management of publishing, and traditional publishing are covered by many articles. Multiple articles are also devoted to editing and publishing in China, writing and submitting scientific manuscripts, bibliometrics and scientometrics, reference styles, and library management. Characteristically, this journal has many articles related to humanities and social sciences.

In Table 3, I show the results of the analysis of the 86 articles published in ESE. Four articles were assigned to two topics, therefore the total number of articles appearing in the table is 90 instead of 86. There are 15 articles, which consist 17.4% of the total 86 articles, devoted to writing skills and the issues related to writing and submitting scientific manuscripts to journals. The second most popular topic is bibliometrics and scientometrics. Twelve articles on this topic consist 14% of the total. Topics such as peer review process, publication ethics, open access publishing, authorship, and policy of journal editing are also covered by many articles. In general, ESE deals with many issues faced by editors and manuscript editors of scientific journals.

Finally, in Table 4, I combine the results of the analysis of the 273 articles published in all three journals. Seventeen articles were assigned to two topics, therefore the total number of articles appearing in the table is 290 instead of 273. Since the three journals analyzed have an emphasis on different and complementary aspects of scholarly editing and publishing, the combined data appear to give a rather balanced view of the important issues in the field. The two most popular topics are open access publishing and writing and submitting scientific manuscripts.

Table 2. Classification of 67 articles published in volumes 43, 44, and 45 of Journal of Scholarly Publishing according to main topics

<table>
<thead>
<tr>
<th>Topic</th>
<th>No. of articles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peer review process</td>
<td>7</td>
</tr>
<tr>
<td>Digital publishing, e-books</td>
<td>6</td>
</tr>
<tr>
<td>Open access publishing</td>
<td>5</td>
</tr>
<tr>
<td>History of publishing</td>
<td>5</td>
</tr>
<tr>
<td>Finance and business management of publishing</td>
<td>5</td>
</tr>
<tr>
<td>Traditional publishing</td>
<td>5</td>
</tr>
<tr>
<td>Editing and publishing in China</td>
<td>4</td>
</tr>
<tr>
<td>Writing and submitting scientific manuscripts</td>
<td>4</td>
</tr>
<tr>
<td>Bibliometrics, scientometrics</td>
<td>3</td>
</tr>
<tr>
<td>Reference styles</td>
<td>3</td>
</tr>
<tr>
<td>Library management</td>
<td>3</td>
</tr>
<tr>
<td>Scientific literature databases</td>
<td>2</td>
</tr>
<tr>
<td>Authorship</td>
<td>2</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>19</td>
</tr>
<tr>
<td>Total</td>
<td>73</td>
</tr>
</tbody>
</table>

The total number appearing in the table is 73 because six articles were assigned to two topics.

Table 3. Classification of 86 articles published in volumes 37, 38, and 39 of European Science Editing according to main topics

<table>
<thead>
<tr>
<th>Topic</th>
<th>No. of articles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Writing and submitting scientific manuscripts</td>
<td>15</td>
</tr>
<tr>
<td>Bibliometrics, scientometrics</td>
<td>12</td>
</tr>
<tr>
<td>Peer review process</td>
<td>8</td>
</tr>
<tr>
<td>Publication ethics</td>
<td>8</td>
</tr>
<tr>
<td>Open access publishing</td>
<td>8</td>
</tr>
<tr>
<td>Authorship</td>
<td>5</td>
</tr>
<tr>
<td>Policy of journal editing</td>
<td>5</td>
</tr>
<tr>
<td>Manuscript editing</td>
<td>4</td>
</tr>
<tr>
<td>Editing and publishing in Iran</td>
<td>3</td>
</tr>
<tr>
<td>Reference styles</td>
<td>2</td>
</tr>
<tr>
<td>Editing and publishing in Russia</td>
<td>2</td>
</tr>
<tr>
<td>Editing and publishing in Estonia</td>
<td>2</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>16</td>
</tr>
<tr>
<td>Total</td>
<td>90</td>
</tr>
</tbody>
</table>

The total number appearing in the table is 90 because four articles were assigned to two topics.
Table 4. Classification of 273 articles published in three recent volumes of Learned Publishing, Journal of Scholarly Publishing and European Science Editing according to main topics

<table>
<thead>
<tr>
<th>Topic</th>
<th>No. of articles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open access publishing</td>
<td>33</td>
</tr>
<tr>
<td>Peer review process</td>
<td>26</td>
</tr>
<tr>
<td>Writing and submitting scientific manuscripts</td>
<td>25</td>
</tr>
<tr>
<td>Bibliometrics, scientometrics</td>
<td>21</td>
</tr>
<tr>
<td>Editing and publishing in China</td>
<td>16</td>
</tr>
<tr>
<td>Publication ethics, research ethics</td>
<td>14</td>
</tr>
<tr>
<td>Finance and business management of publishing</td>
<td>13</td>
</tr>
<tr>
<td>Information technology applicable to editing and publishing</td>
<td>11</td>
</tr>
<tr>
<td>Digital publishing, e-books</td>
<td>10</td>
</tr>
<tr>
<td>Scientific literature databases</td>
<td>9</td>
</tr>
<tr>
<td>Authorship</td>
<td>8</td>
</tr>
<tr>
<td>Reference styles</td>
<td>7</td>
</tr>
<tr>
<td>Policy of journal editing</td>
<td>7</td>
</tr>
<tr>
<td>History of publishing</td>
<td>6</td>
</tr>
<tr>
<td>Manuscript editing</td>
<td>6</td>
</tr>
<tr>
<td>Traditional publishing</td>
<td>6</td>
</tr>
<tr>
<td>Library management</td>
<td>5</td>
</tr>
<tr>
<td>Journal usage statistics</td>
<td>4</td>
</tr>
<tr>
<td>Information gathering pattern</td>
<td>4</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>59</td>
</tr>
<tr>
<td>Total</td>
<td>290</td>
</tr>
</tbody>
</table>

The total number appearing in the table is 290 instead of 273 because seventeen articles were assigned to two topics.

access publishing and peer review process, which consist 12.1% and 9.5% of the total 273 articles respectively. Writing and submitting scientific manuscripts and bibliometrics and scientometrics are also very popular topics. Other important topics covered by many articles include editing and publishing in China, publication ethics and research ethics, finance and business management of publishing, information technology applicable to editing and publishing, digital publishing and e-books, scientific literature databases, and authorship.

Discussion

In this article, I have analyzed the contents of articles published in three recent volumes of LP, JSP, and ESE. By carefully classifying all 273 articles published during that period into selected broad categories, I have figured out the topics of major current interest in scholarly editing and publishing. It has been found that open access publishing and peer review process are the two hottest topics in the field. Other non-traditional topics currently receiving a great attention include bibliometrics, publication ethics, information technology, digital publishing, and literature databases. In order to keep up with the rapidly-developing field of scholarly editing and publishing and develop a local journal into an international journal of a high standard, it is important to remain keen to the latest development related to these topics.

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

References

Creating Journal Article Tag Suite extensible markup language from Japanese language articles and automatic typesetting using extensible stylesheet language transformations

Hidehiko Nakanishi¹, Toshiyuki Naganawa², Soichi Tokizane³, Tsuyoshi Yamamoto¹

¹Nakanishi Printing Company Limited, Kyoto; ²Antenna House Inc., Tokyo; ³Center for Research and Development of Higher Education, University of Tokyo, Tokyo, Japan

Abstract
A Japanese-language journal has been converted into the Journal Article Tag Suite (JATS) extensible markup language (XML) format, and typeset automatically via XSL formatting objects (XSL-FO) to produce both the printed issues and online journals which are published on the J-STAGE e-journal platform in full-text hypertext markup language. As there is no established XML workflow tools available for Japanese language journals, the Nakanishi Printing Company has developed its own workflow using Antenna House (AH) Formatter. As scientific, technical, and medical journals are by-and-large in international standards even in Japanese-language, typesetting is fairly straightforward. Still, there are several challenges in processing agglutinative languages which are common in Asian counties such as Japanese, such as identifying family names/given names in a name string, or inserting “Zero Width Joiner” to avoid unfavorable line breaks. Also we had to develop individual extensible stylesheet language transformations (XSLT) for each article to position tables and figures rightly. As we go on and work with humanities journals we should face more challenges.

Keywords
Japanese language; Journal Article Tag Suite; Extensible markup language; Extensible stylesheet language transformations

Introduction
Not all research articles are written in English. In countries other than English-speaking ones,
higher education and scientific researchers are conducted in their native tongue and thus articles are submitted in non-English languages. Such articles are not even using Latin alphabets, but Chinese characters, Korean Hangul, or Thai alphabets, for example.

According to the study conducted by the National Institute of Science and Technology Policy, the ratio of scientific, technical, and medical (STM) articles in Japanese were 25.6%. J-STAGE, an E-journal platform operated by the Japan Science and Technology Agency, published 29,813 Japanese-language journal articles vs. 17,182 English-language ones in 2013, i.e., 63.7% were in Japanese. In addition, most of the humanity/social science research articles, which are typically published in university journals, are naturally in Japanese rather than in English. Searching NDL-OPAC which contains various articles published in Japan, revealed that there were 47,888 university journal articles in Japanese in 2013 while 5,048 in English, i.e., 90.4% are in Japanese [1].

As Journal Article Tag Suite (JATS) 0.4 (formerly National Library of Medicine [NLM] document type definition [DTD] 3.1) introduced so-called multi-language capability in early 2011 [2], it has been possible to tag such Japanese-language research articles using JATS. J-STAGE now officially supports JATS 0.4, and encourage publishers to load their papers in JATS.

Multi-language Articles on J-STAGE

The first such journal in JATS that appeared on J-STAGE was the *Japanese Journal of Gastroenterological Surgery* (JJGS) [3]. Figs. 1 and 2 show top pages of a sample article in Japanese and in English. J-STAGE has a toggle feature for readers to switch between a Japanese page and English page to take advantage of this. Fig. 3 shows its body text page of this article. Although the body texts are in Japanese (Kanji and Kana) for

Fig. 1. A sample article page of the *Japanese Journal of Gastroenterological Surgery* on J-STAGE in Journal Article Tag Suite (JATS). Available from: https://www.jstage.jst.go.jp/browse/jjgs/45/7/_contents/-char/ja/.
Creating JATS XML from Japanese language articles

Creating JATS XML from Japanese language articles

In the example of Fig. 4, an author name is expressed, one in Japanese as: “中西” and “秀彦,” and another in English as “Nakanishi” and “Hidehiko.” The language of the element value is defined using “xml:lang.” J-STAGE asks publishers to use the value “en” and “ja-Jpan” for “xml:lang.” The list of such “alternatives” we use are in Table 1. For elements which do not need such disambiguation, such as <abstract> and <kwd-group>, simply repeating such elements with different language attributes are sufficient. As <article-title> and <subtitle> have to be unique to an article, <trans-title> and <trans-subtitle> are used to express alternate language data (Fig. 5).

Workflow of Creating Japanese XML Articles in JATS

It is a challenge to create extensible markup language (XML) data from author manuscripts, typically written in Microsoft Word. For English-language articles, eXtyles provided by Inera Inc. is a standard tool to convert a Word file into a JATS XML file for many publishers. Others use offshore vendors to convert word/pdf files to XML. Unfortunately, eXtyles is not convenient enough for Japanese-language articles, nevertheless there is no other readily available system for Japanese texts.

http://www.escienceediting.org
3. 切手種類特定マークによる生存期間の比較

204名の生存曲線を、Fig. 1 に示す。生存期間中央値は584日で、5年生存率は24.4%であった。異なる生存曲線を比較すると、各群の1, 3, 5年生存率は、非手術群58.8, 48.0, 43.6%、正常化群78.5, 42.0, 31.7%、非正常化群61.6, 18.4, 9.0%であった。生存期間中央値は、手術群で1,092日、正常化で736日、非正常化で505日であった。非正常化群で、有義に生存期間が長く、予後不良であった（Fig. 2, P<0.0001, log-rank test）。

4. 切手種類特定による予後因子の抽出

分析対象は以下の順に分類した。術後療法群では、術前治療群（CA15-3上昇＞非上昇例）、術式（根治手術＞局所切除）、進行度（stage 4＞stage 3＞stage 2＞stage 1）、最適治療（R0＞R1-R2＞R3）、術後療法群（術後療法＞非療法）の有無を予後因子として抽出した。それらが生命質を損なう因子を含めて予後因子を導入すると、進行度、術後療法群が有義な予後因子として選択された（Table 1）。

Table 1. Tags for multi-language expression in Journal Article Tag Suite (JATS)

<table>
<thead>
<tr>
<th>Element name</th>
<th>Multi-language tag</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article title</td>
<td><trans-title></td>
<td></td>
</tr>
<tr>
<td>Article subtitle</td>
<td><trans-subtitle></td>
<td></td>
</tr>
<tr>
<td>Names</td>
<td><name-alternatives></td>
<td></td>
</tr>
<tr>
<td>Affiliations</td>
<td><aff-alternatives></td>
<td></td>
</tr>
<tr>
<td>Collaborators</td>
<td><collab-alternatives></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td><abstract></td>
<td><abstract> is repeatable with different "xml:lang."</td>
</tr>
<tr>
<td>Keyword group</td>
<td><kwd-group></td>
<td><kwd-group> is repeatable with different "xml:lang."</td>
</tr>
<tr>
<td>Generic</td>
<td><alternatives></td>
<td>Any component which need multi-language data</td>
</tr>
</tbody>
</table>

Fig. 3. The body text page (in Japanese) of the same article as in Fig. 1.

Fig. 4. A sample multi-language expression using <name-alternatives>.
Fig. 5. Tagged author names of the article in Figs. 1 and 2.

Thus publishers and type-setters have been coping with this challenge.

Several approaches were implemented in Japan as follows: 1) output MS Word XML and convert it to JATS XML; 2) use eXtyles and then manually edit the result XML; 3) paste text to FrameMaker, export XML, and convert it to JATS XML; 4) ask offshore vendors to create XML.

In the case of JJGS, the typesetter, Nakanishi Printing Company, has developed its own workflow to create XML as follows: 1) converting Microsoft Word to Microsoft Office Open XML; 2) converting Microsoft Office Open XML to JATS XML; 3) validating XML.

Converting Microsoft Word to Microsoft Office Open XML

Microsoft Office Open XML is a XML-based file format developed by Microsoft to represent, and its converter can translate into an XML file from MS Word [4]. A Word file is styled in advance to enhance the correct XML tagging. As the tag set of Office Open XML is very generic, it can export charts and tables (spreadsheets) as containers into XML (Fig. 6).

Converting Microsoft Office Open XML to JATS XML

The output XML file then goes through extensible stylesheet language transformations (XSLT) to remove unnecessary tags introduced by the Open XML converter. The resulted file is further processed by a Perl program to insert tags as defined by JATS. For English-language articles, it is possible to identify objects such as author names or journal titles fairly obviously, by looking at typeface such as bold faces or italics, or punctuation such as colons or periods. We have to insert word separators manually, especially for author names.

Agglutinative languages, such as Japanese or Korean, are characterized by the attaching of stems and affixes to form longer words to express term conjugation. In Japanese and
Korean, this results in completely “agglutinated” sentences with no word separators such as spaces. In Japanese, word separation shall be achieved by identified nouns, e.g., which are in Chinese characters (Kanji) most of the time, and/or using dictionaries, or just manually.

To identify elements for article metadata, we insert separators manually. This is especially the case for author names and affiliations. Japanese author names are often expressed as a combined string, where a surname, e.g., 中西, and a given name, e.g., 秀彦, are attached as 中西秀彦. To tag such a name string, we need to insert a separator manually, e.g., 中西@秀彦, because, it could be a combination of 中西 and 秀彦, or 中西秀, and there is no algorithm to determine it correctly. We only know this by experience, or by asking the author himself/herself. Fig. 7 shows an example of author names with separators. Identifying elements is also have an issue for citations. Family names and given names are almost always not separated, and have to be manually marked for separation. In addition, identifying article titles and journal names have to be done manually.

Validating XML

The result XML is then validated using the Oxygen XML editor, and the final JATS XML is obtained. It will be uploaded onto J-STAGE, and published as full text hypertext markup language (HTML) data. The quality of the article is checked using the preview feature of J-STAGE.

Creating PDF

Using AH formatter

Although JJGS is not published in print, there are strong needs to view articles in PDF. Figs. 8 and 9 show a portable document format (PDF) image corresponding to the HTML in Figs. 1 and 3 respectively. Such PDFs are created by using AH Formatter [5] from Antenna House. We have developed XSLT for this tool. An example is in Fig. 10. The XSLT converts a JATS file into XSL formatting objects (XSL-FO) which expresses page model format for PDF. The XSL-FO is then converted to PDF using the AH Formatter. The result PDF is used for proofreading by the editorial office and authors. Any proofs will be reflected to the original XML, or modifying the XSLT.
Creating JATS XML from Japanese language articles

PDF files thus created are mostly good as long as STM papers are concerned, as they are basically in the same/similar format as the corresponding western articles. UTF-8, which is the standard character encoding for XML, also enables to express most Japanese characters correctly. Still we have the following problems.

Special care needed

PDF files thus created are mostly good as long as STM papers are concerned, as they are basically in the same/similar format as the corresponding western articles. UTF-8, which is the standard character encoding for XML, also enables to express most Japanese characters correctly. Still we have the following problems.

Avoid punctuations, geminate consonants, and dashes at the top of a line

Although Japanese texts do not use hyphenation of words, we have rules applicable to line breaks.

This type of rules may be handled by the formatter such as AH Formatter (Fig. 11).

Avoiding breaking-up a word, especially person’s names

This can only be achieved inserting “Zero Width Joiner” code (�) in between such as “中西” in advance. This practice causes a drawback where text searching of “中西” fails (Fig. 12).

Positioning figures and tables

It is also necessary to develop separate XSLTs to process figures and tables in order to create acceptable PDF, which may be the case even for English-language articles published in Japan. An example of such XSLT is shown in Fig. 13. This is because Japanese authors/publishers ask the location of figures/tables exactly where they wanted they should be, rather than where the Formatter automatically located. This requires a lot of manual processing, which certainly raises cost. We, typeset-
Fig. 10. extensible stylesheet language transformations (XSLT) used for Antenna House (AH) Formatter.

Fig. 11. Avoiding line-top punctuations (“」”).

Fig. 12. Avoiding breakups of certain words (“中西” is a person’s family name).
Fig. 13. Sample extensible stylesheet language transformations (XSLT) for figures.

```xml
<xsl:attribute-set name="float">
  <xsl:attribute name="xsi:float">
    <xsl:choose>
      <xsl:when test="@id='F3'">pugo top</xsl:when>
      <xsl:when test="@id='TI'">page bottom</xsl:when>
      <xsl:otherwise>column top</xsl:otherwise>
    </xsl:choose>
  </xsl:attribute>
</xsl:attribute-set>
<xsl:attribute-set name="id">
  <xsl:attribute name="background-color">
    <xsl:choose>
      <xsl:when test="matches(.,"'^#\d{3}\d{3}$'')">H#3b3b3b</xsl:when>
      <xsl:otherwise/>
    </xsl:choose>
  </xsl:attribute>
</xsl:attribute-set>
```

Fig. 14. Horizontal vs. vertical writing.

Fig. 15. Various patterns for vertical writing.

Fig. 16. Examples of emphases.

Fig. 17. Warichu.

What Are To Be Done Next

So far, what we need to process are STM articles which are written in standard, western way, and the difficulties we face are limited. In the future, we need to deal with social science/humanities literature, which are more traditional and contain the following characteristics.

Vertical writing

Although this itself does not require any special treatment in JATS tagging, automatic typesetting is not easy. Vertical writing does not simply mean aligning characters vertically (Fig. 14). For example, in writing Arabic numerals or Latin alphabets vertically, there are orientation options such as, 1) to rotate them (left), 2) not to rotate (center), and 3) to use Chinese numerals (right) as in Fig. 15. This means we need to declare writing direction when we create an XML file, such as `<writing-direction type-of-direction="vertical"/>

Emphasis or Kenten

Emphasis is an extension of boldface or italics, which is often seen in Japanese articles (Fig. 16). It is not yet supported by JATS.

Warichu

Warichu is a short note inserted within a sentence in two lines, typically with parentheses (Fig. 17). This is often used in humanity scholarly publications, and supported by MS Word.
Conclusion

Writing is a culture. Historically, Japanese writing and typesetting, as well as those of China and Korea, were extremely conscious of visual effect. This is probably because we use pictograph/ideograph writing system. This explains the fact that calligraphy has been so popular and advanced in those far eastern Asian countries. Thus authors and publishers care about a page layout heavily, even if the page consists of texts only. In describing texts in XML, sometimes it is necessary to code such layout information as Warichu. Maybe we should focus on semantics of Warichu, that is an inserted note, rather than its style, but we have to think. As we go further into traditional Japanese-language papers, we will discover more issues, which may or may not be solved by extending JATS.

Conflict of Interest

Hidehiko Nakanishi and Tsuyoshi Yamamoto are President and staff of Nakanishi Printing Company Limited, Kyoto, Japan respectively. Toshiyuki Naganawa is a staff of Antenna House Inc., Tokyo, Japan. This article is for research purpose not for advertisement of co-authors’ companies.

References

Scientific and academic journals in the Philippines: status and challenges

Evelyn Mae Tecson-Mendoza¹,²

¹Institute of Plant Breeding, College of Agriculture, University of the Philippines Los Baños, Laguna; ²National Academy of Science and Technology Philippines, Manila, Philippines

Abstract

As of July 2015, 28 Philippine scientific journals out of 777 Philippine scholarly journals are listed in the master journal lists of Thomson Reuters (TR), Scopus, or both. Of these scientific journals, thirteen are published by universities, two by government institutions, ten by professional organizations and three by private for-profit or non-profit organizations. Nineteen of these journals are over 25 years old, with the Philippine Journal of Science and the Philippine Agricultural Scientist being the oldest at 108 and 103 years in publication, respectively. Scientific journals in the Philippines, like other countries in Asia, face various increasing challenges. Among these challenges are getting listed in the master journal lists and citation databases of TR, Scopus, or both; obtaining funding; reaching a wider readership; attaining higher impact factors; competing for papers; and increased submission of manuscripts from outside the country. To promote the improvement of local journals, the National Academy of Science and Technology Philippines has given outstanding publication awards for scientific papers published in local journals for the past two decades. The Philippine Commission on Higher Education has accredited local journals that are included in either TR and Scopus journal master lists, and provides monetary incentives to accredited journals. Training workshops on scientific article writing and editorial management are conducted for researchers and editors by universities and professional and government organizations. A network of Philippine science editors has been formed to work together to upgrade and modernize selected journals to international standards.

Keywords

Accreditation; Citation databases; Impact factor; Philippine journals

Introduction

The Philippines has a century-old history of scientific and academic publications. Two journals, the Philippine Journal of Science (PJS) and the Philippine Agricultural Scientist (PAS) are...
108 and 103 years in publication, respectively. The PJS was established in 1906 by the Bureau of Science (now the Department of Science and Technology, DOST), which had earlier published its research results in a series of bulletins. The PJS initially covered topics on agricultural and mineral resources and eventually included tropical medicine. On the other hand, the Philippine Agriculturist and Forester (now PAS) was founded by the student body of the College of Agriculture and Forestry, University of the Philippines (UP) at its Los Baños campus in 1911. The publication was renamed the Philippine Agriculturist and its management transferred to the college faculty in 1918, and its present name was adopted in 1999. Initially, PJS and PAS obtained their research articles from their constituencies, but eventually they began to receive and publish articles from other agencies and institutions within and outside of the country. In addition to publishing original research articles, the Philippine Agriculturist chronicled the growth and development of UP, as well as Philippine agriculture [1]. On behalf of UP, the Philippine Agriculturist won the Diploma D'Honneur by the International Jury in Paris for its volumes XIV and XVIII in 1932.

The Acta Medica Philippina, the official journal of the UP College of Medicine and College of Health, was first published in 1939. For many years, this journal was recognized as the primary medical journal of the Philippines and, like PJS and PAS, was widely circulated in libraries in Asia and the US. It served as a rich resource for articles on tropical diseases and local Philippine medical conditions, such as the rotavirus enteropathies and the famous Rotor syndrome. The Acta Medica Philippina declined in the late 1960s due to decreasing submission of papers, which might have resulted from an increase in the number of specialty medical journals. In 2003, the Acta was relaunched and later chosen as the National Health Science Journal by the DOST and the Philippine Council for Health Research and Development [2]. In the education field, the Journal of Philippine Education served the education sector from 1918 and ceased publication with its 31st volume in 1953 [3].

As of 2014, 777 scientific and scholarly Philippine journals were listed in the ISSN Directory of Journals from 1981 to 2013 [4]. Scientific journals in the Philippines, like other countries in Asia, face increasing challenges. This paper analyzes and discusses the status and challenges of Philippine science journals, which include getting listed by leading citation databases; obtaining funding; reaching a wider readership; attaining higher impact factors; competing for papers; and, in general, meeting international standards.

Status and Profile of Selected Philippine Scientific Journals

A large majority (87%) of the 777 Philippine scientific and academic journals are published by higher education institutions, and the remainder by professional organizations (12%) and government institutions (1.5%) [4]. Of these, only 28 journals (4% of the total number) are listed in the Thomson Reuters (TR) or Scopus master journal lists, or both (Table 1) [5].

As with most journals, Philippine scientific journals have aimed to be listed in international citation databases. Based on the journal master lists of TR and Scopus [6,7], eight Philippine journals are listed in both master lists, while an additional eight are listed in TR and a further twelve are listed in Scopus master lists (Table 1). Of the sixteen journals listed in the TR master list, only four are included in the Science Citation Index Expanded; namely, PAS, Journal of Environmental Science and Management, the Philippine Journal of Crop Science and Asia Life Sciences. Both PAS and Journal of Environmental Science and Management are journals of UP Los Baños. On the other hand, three journals in the social sciences, Political Science Journal, Asian and Pacific Migration Journal, and The Asia-Pacific Education Researcher (TAPER) are included in the Social Sciences Citation Index (SSCI). Among the medical journals, the following are listed in the Scopus master list: Acta Medica Philippina, the Philippine Journal of Internal Medicine, Philippine Journal of Nursing, Philippine Journal of Surgical Specialties, and the Philippine Journal of Obstetrics and Gynecology. Only nine of the 28 journals have an impact factor ranging from 0.059 to 0.793, with TAPER and PAS having the highest impact factor values.

Two (7%) of these journals are more than 100 years old. Seven (25%) are between 50-99 years old, 10 (36%) are 25-49 years old, six (21%) are 10-24 years old, and three (11%) are 5-9 years old. Only eight of these journals publish four issues per volume per year. One journal has three issues, fourteen publish two issues, and five publish only one issue, per volume.

Of the 28 journals, thirteen are based at and published by universities (five public and eight private universities), two by government institutes, ten by professional organizations and three by private for-profit or non-profit organizations (Table 1). It should be noted that three journals are published for their organizations by international publishers. These are TAPER, published for Dela Salle University by Springer; the Philippine Political Science Journal, published by Taylor & Francis for the Philippine Political Science Association; and the Asian and Pacific Migration Journal, published for the Scalabrini Migration Centre by SAGE Journals.

Publication of papers from outside the country is high percentage for only 11 Philippine journals, and equates to ≥ 50%
Table 1. Summary of Philippine scientific and academic journals listed in the journal master lists of Thomson Reuters, Scopus, or both

<table>
<thead>
<tr>
<th>Title of journal</th>
<th>Launching year</th>
<th>No. of issues/year</th>
<th>Publisher</th>
<th>Thomson Reuters</th>
<th>Scopus</th>
<th>Type of publisher</th>
<th>Articles abroad (%)^d</th>
<th>Impact factor in 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Philippine Journal of Science</td>
<td>1906</td>
<td>2</td>
<td>Department of Science and Technology</td>
<td>×</td>
<td>×</td>
<td>Government</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>2 Philippine Agricultural Scientist</td>
<td>1911</td>
<td>4</td>
<td>University of the Philippines Los Baños</td>
<td>×</td>
<td>SCIE</td>
<td>University</td>
<td>65</td>
<td>0.368</td>
</tr>
<tr>
<td>3 The Philippine Journal of Veterinary Medicine</td>
<td>1963</td>
<td>2</td>
<td>University of the Philippines Los Baños</td>
<td>×</td>
<td>×</td>
<td>University</td>
<td>30</td>
<td>0.059^h</td>
</tr>
<tr>
<td>4 Philippine Political Science Journal</td>
<td>1974</td>
<td>2</td>
<td>Philippine Political Science Association with Taylor & Francis from 2012</td>
<td>×</td>
<td>SSCI</td>
<td>Professional organization</td>
<td>25</td>
<td>0.294</td>
</tr>
<tr>
<td>5 Journal of Environmental Science and Management</td>
<td>1987</td>
<td>2</td>
<td>University of the Philippines Los Baños</td>
<td>×</td>
<td>SCIE</td>
<td>University</td>
<td>20</td>
<td>0.103</td>
</tr>
<tr>
<td>6 Asian and Pacific Migration Journal</td>
<td>1992</td>
<td>4</td>
<td>Scalabrini Migration Center</td>
<td>×</td>
<td>SSCI</td>
<td>Private</td>
<td>95</td>
<td>0.125</td>
</tr>
<tr>
<td>7 Asia Life Sciences</td>
<td>1991</td>
<td>2</td>
<td>Asia Life Sciences</td>
<td>×</td>
<td>SCIE</td>
<td>Private</td>
<td>32</td>
<td>0.180</td>
</tr>
<tr>
<td>8 The Asia Pacific Education Researcher</td>
<td>1991</td>
<td>4</td>
<td>Springer (De La Salle University, founder)</td>
<td>×</td>
<td>SSCI</td>
<td>Private</td>
<td>100</td>
<td>0.793</td>
</tr>
<tr>
<td>9 Philippine Journal of Crop Science</td>
<td>1975</td>
<td>3</td>
<td>Crop Science Society of the Philippines</td>
<td>×</td>
<td>SCIE</td>
<td>Professional organization</td>
<td>12</td>
<td>0.039</td>
</tr>
<tr>
<td>10 Philippine Entomologist</td>
<td>1986</td>
<td>2</td>
<td>Philippine Association of Entomologists</td>
<td>×</td>
<td></td>
<td>Professional organization</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11 Sylvatrop</td>
<td>1990</td>
<td>2</td>
<td>Ecosystem Research and Development Bureau, DENR</td>
<td>×</td>
<td></td>
<td>Government</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12 Asian Journal of Biodiversity</td>
<td>2010</td>
<td>1</td>
<td>Liceo de Cagayan University</td>
<td>×</td>
<td></td>
<td>University</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13 Philippine Journal of Systematic Biology</td>
<td>2007</td>
<td>1</td>
<td>Association of Philippine Taxonomists (formerly, Association of Systematic Biologists Philippines)</td>
<td>×</td>
<td></td>
<td>Professional organization</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>14 Philippine Science Letters (Online) now the International Journal of Philippine Science and Technology</td>
<td>2009</td>
<td>2</td>
<td>USAID STRIDE</td>
<td>×</td>
<td></td>
<td>Private</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15 Silliman Journal</td>
<td>1954</td>
<td>2</td>
<td>Silliman University</td>
<td>×</td>
<td></td>
<td>Private</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td>16 The Philippine Scientist</td>
<td>1964</td>
<td>1</td>
<td>University of San Carlos</td>
<td>×</td>
<td></td>
<td>Private</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>17 SABRAO Journal of Breeding and Genetics</td>
<td>1968</td>
<td>2</td>
<td>Society of for the Advancement of Breeding Research in Asia and Oceania</td>
<td>×</td>
<td></td>
<td>Professional organization</td>
<td>95</td>
<td>0.230</td>
</tr>
<tr>
<td>18 Kritika Kultura</td>
<td>2002</td>
<td>1</td>
<td>Ateneo de Manila University</td>
<td>×</td>
<td></td>
<td>Private</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>19 DLSU Business and Economics Review</td>
<td>1988</td>
<td>2</td>
<td>De la Salle University</td>
<td>×</td>
<td></td>
<td>Private</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>20 ACTA Medica Philippina</td>
<td>1939</td>
<td>4</td>
<td>University of the Philippines Manila</td>
<td>×</td>
<td></td>
<td>University</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(Continued to the next page)
for five and 25%-49% for six journals.

Challenges Facing Philippine Journals

The challenges facing scientific and academic journals in the Philippines are both local and international in nature. These challenges relate to (1) the proliferation of journals and related problems, such as competition for papers and sub-par journals; (2) journal funding and operation; (3) getting listed or accredited in major citation databases; (4) competition for papers; (5) reaching a wider and bigger readership and paper contribution from outside the country; and (6) meeting international standards for academic journal publications.

Proliferation of Journals

Of the 777 scientific and scholarly journals in the Philippines, 86% were established after the year 2000, which may have been a response to satisfy the Commission on Higher Education (CHED) requirements for increased research publications and incentives for journal accreditation [4]. These journals usually contain only contributions from their own researchers who, to a certain extent, are forced to submit their papers in their university's journal. Thus, researchers are unable to publish their work in other, better-established journals in the country or abroad. Moreover, many of these university-based journals are unable to comply with high journal quality requirements, foremost of which is rigorous peer review; thus, the resulting journal papers and journals are often sub-par in quality [4] and do not qualify to be listed in the TR or Scopus journal master lists.

Funding and Operation

Most Philippine journals have limited budgets. They obtain their funds to support publication and related expenses from the government and/or private sector grants, university/institution budgets, subscriptions, and membership funds (in case of journals of professional organizations). Another major limitation is the lack of regular staff for most journals, which are staffed part-time by the organizations’ members. Only a few
journals have their own regular staff, such as the PAS and the PJS, with four and one regular staff members, respectively.

Accreditation in Major Citation Databases
In the Philippines, listing in either the TR or Scopus master journal lists will qualify journals for accreditation by CHED and monetary incentives [8]. Scientific papers published in such journals also qualify for awards with monetary incentives in several universities, such as the UP system, Mindanao State University, and others, and in government research institutes such as those of the DOST.

Competition for Papers
The number of published articles (about 1,200 in 2011) from the Philippines has been much lower than those from other Association of South East Asian Nations (ASEAN) countries [9]. Thus, Philippine journals have to compete for a smaller number of papers from local scientists, who may prefer to submit their papers to higher-impact journals outside the country. In addition, this low number of published papers does not include those published in local journals that are not listed in the TR or Scopus master journal lists.

Reaching a Wider and Bigger Readership and Obtaining Impact Factor
With the advent of the Internet, many Philippine journals have created websites and made their issues available both online and in print, or online only. Several offer delayed open access, while a few are open access without any charges for article publication. Those without their own websites have joined portals for journals such as UPLB Journals Online, Philippine Journals Online, E-International Journals of Academic and Scientific Research, and Philippine-e Journals, among others.

Meeting International Standards for Academic Journal Publications
In addition to being included in the top citation databases, there are new standards that journals must attain. These include adoption and/or use of the following: (1) digital object identifiers (DOIs) for journal articles and other publications, (2) a funding registry, (3) identification of current article status, (4) checking for plagiarism, and (5) author identification. The DOI was the first service offered by CrossRef, which now offers more services (including CrossCheck, CrossMark, FundRef, Text and Data Mining, and CrossRef Metasearch) [10]. Inclusion in a journal database such as PubMed Central is even more important for increasing readership than open access and citations are [11]. No Philippine biomedical journals are listed in established journal databases such as PubMed.

Efforts to Meet International Standards of Scientific Journals
For the past two decades, the National Academy of Science and Technology Philippines (NAST PHL) has given awards to outstanding papers published in Philippine scientific journals to encourage researchers to publish their high-quality papers in local journals and further improve these journals. On the other hand, since 2009 CHED has accredited local journals based on compliance with internationally-accepted standards and practice of refereeing and peer review. CHED accreditation awards for journals included in TR or Scopus master journal lists provide 200,000 Philippine peso (about 4,440 US dollars) per year for three years [12]. In 2012, CHED accredited 11 journals with a total budget of 2.2 million Philippine peso (50,000 US dollars) for one year for a total of 6.6 million Philippine peso (USD 150,000) for three years. This pales in comparison with the 5 million US dollars support provided to the Korean Federation of Science and Technology Societies for journal publications by the Korean government [13].

Various organizations have also provided training to editors on scientific journal management and to researchers on writing scientific articles. Moreover, training on preparing research proposals and conduct of research has been regularly conducted to upgrade the knowledge and skills of researchers.

In a meeting organized in October 2014 by NAST PHL, the editors and staff of 18 leading journals in the Philippines discussed their needs, difficulties, and goals to determine means to meet international standards. Some of the recommendations were as follows: (1) formation of a network of editors and/or scientific and academic Philippine journals; (2) creation of a common portal for Philippine journals to be linked to journal websites; (3) harmonization of CHED and DOST policies on journals; (4) indexing of Philippine journals and published articles; (5) conduct of training courses on management of journals, editing, new international standards, writing scientific articles, etc.; and (6) greater financial support for selected scientific and academic journals from government to help them achieve their goals.

Conclusion
Although a number of Philippine journals have been included in the TR and Scopus master journal lists and citation databases, in general their readership and citation impact factors are low. Similar to initiatives in other countries regarding their science journals, efforts and financial support must be intensified by the Philippine government and all concerned sectors to support the improvement and modernization of its scien-
Scientific and academic journals to enable them to attain international standards.

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

Acknowledgments

The author acknowledges with thanks Prof. Fabian M. Dayrit, Ateneo University and Prof. Allan B.I. Bernardo, University of Macau, for various information and insights they kindly shared; to the National Academy of Science and Technology Philippines for convening the Philippine science editors meeting; and to Ms. Rowena V. Briones of the NAST Secretariat for her help to arrange meetings and obtaining various data for this paper.

References

9. Ilieva J. Research collaboration in selected ASEAN countries. Study supported by the British Council and Global Education Dialogues. Paper presented at: Hong Kong 2012; 2012 Sep 29; Hong Kong.
CrossRef tools for small publishers

Rachael Lammey
CrossRef, Oxford, United Kingdom

Abstract
CrossRef is a membership association for scholarly publishers with a mission of improving scholarly communication through community collaboration. CrossRef now has over 5,000 publisher members, and a large proportion of these member publishers (over 80%) are small, international publishers. As such, CrossRef needs to put tools in place to help these smaller publishers fulfil the basic technical requirements of CrossRef membership and participate in optional CrossRef services—CrossCheck and CrossMark among others. This article will describe some of CrossRef’s upcoming and recently launched tools for small publishers, detail how they work, and will let members know where they can find and make use of these applications. It will focus predominantly on the CrossRef linking console, the additions to the web deposit form and the CSV (comma separated value) upload improvements that have recently been released or are scheduled for release in the near future.

Keywords
CrossRef; Digital object identifier; Metadata; Reference linking

Introduction

Membership of CrossRef gives publishers the ability to create and deposit digital object identifiers (DOIs) for the content they produce. Publishers allocate DOIs to their content by depositing bibliographic metadata for each piece of content with CrossRef, metadata that includes the current location of the journal, book, book chapter or conference proceedings on the web. The DOI will then resolve to that location if a researcher clicks on or ‘resolves’ it. If that piece of content ever moves to a new uniform resource locator (URL), the publisher can come to CrossRef and update the information associated with that DOI, and once that change is made, any researcher clicking on that DOI will be taken to the content in its updated location. As such, this makes the DOI an essential resource in creating a permanent linking infrastructure to connect research on the web, and allow researchers to follow the thread of research from one paper to another.
Linking References

One of the main ways that readers follow the links between research is by looking at the references section at the end of an article. CrossRef members are required to link the references in their journal articles using the DOI, as shown in Fig. 1. Linking references in this way ensures that the connections to the related content persist over time so that the reader can be sure of being able to follow-up on any further research on the topic in question.

Many smaller CrossRef publishers find this linking difficult to achieve however, because of the technical steps, time, and effort needed to do this. Publishers need to extract the references from their article and check them against the CrossRef database (containing the bibliographic metadata and DOIs for over 73 million content items) in order to find the DOI for the reference. They then need to display these, and link out from the on the online copy of the article itself, or from the article homepage.

This can be particularly difficult for publishers who only produce content in portable document format (PDF). The steps needed to copy, paste and match the references from the PDF file are time-consuming, often too time-consuming for small editorial offices to be able to undertake. As such, CrossRef has created a tool called the ‘linking console’ to help small publishers automatically extract references from PDF files, match those references to DOIs, and then deposit those references with CrossRef, so that they can then be linked as per the CrossRef requirements.

Using the CrossRef Linking Console

The linking console is currently available at the following URI: https://apps.crossref.org/console/login. To log in, publishers can use their existing CrossRef credentials i.e., those that they use to deposit their DOIs, and when they have logged in they will be presented with a page showing the history of any PDFs that they have already uploaded to the tool (Fig. 2).

When the publisher has a PDF they want to upload to the tool to extract references from it, they can click on the ‘upload’ button to the top right of the screen. This will present them with the option to upload their file in one of a number of ways—they can drag and drop it into the window, select files from a specific location, click ‘choose file’ to browse for a file to upload. The tool supports the upload of multiple files at a time.

Once the files that the publisher wants to work on have been successfully uploaded and processed by the system, the number of citations extracted and matched will be visible to the right of the screen. The title of the paper will also be displayed if the tool has been able to extract it. The user can then click on the individual entry for an article to view the references that have been extracted. When they do this, the page

Fig. 1. Reference linking using the digital object identifier (DOI).
The linking console and other useful tools

containing the references that the system has found will be displayed on the left of the screen, with a column to their right showing the piece of content (with DOI) that the reference has matched to within the CrossRef database. An example is shown in Fig. 4.

If the user isn’t sure that the first option presented by the system is correct, they can click on the ‘matched to’ entry and be taken to a page where they can choose from other options the tool has found or edit the reference the tool has presented in case there are errors in the text. If the text is edited, the tool will go back and present the publisher with a new list of possible matches based on the updated text. Publishers should remember however, that a reference may not be matched to a DOI if the article is not in the CrossRef database.

When the publisher has worked through the references for the paper and is ready to deposit them into the CrossRef system, they can click on the green ‘Deposit Citations’ button at the top right of the screen. When they do so, the window shown in Fig. 5 will appear. At present, publishers will need to have deposited a DOI for an article with CrossRef before they can deposit the references for it using the linking console.

In the citation deposit window, the publisher should enter the DOI for the article that the references are associated with. As they do this, the system will bring up the bibliographic information it holds for that DOI so that the user can verify that they are depositing the correct references for the article. Fi-
Finally, they can click ‘create deposit’ to deposit the references associated with that DOI into the CrossRef system.

The CrossRef system will store these searches, so that if a DOI is deposited in future that matches the reference, it will appear in the tool and the publisher can add it and redeposit the list of citations for that article. There is no charge for publishers to either deposit references or to make redeposits of them.

Displaying the Linked References

CrossRef will provide a widget that publishers can use to display these references. Publishers can add the widget to their HTML landing pages, and the widget will reference the DOI for the paper and use it to look up and show the references deposited for that DOI. The widget will be able to display the references in a variety of standard citation styles, depending on what format the publisher prefers.

To ensure the widget is able to look up and display the references for a piece of content, publishers should contact CrossRef Support and ask to make their references open for distribution i.e. make them freely available so that the widget can access them. This can currently be enabled at the level of the DOI prefix by CrossRef staff.

Release Date and Known Issues

The linking console has been available for beta testing since early 2015, and is scheduled for release in early third quarter. However, any publishers interested in using the tool at present can do so and are encouraged to provide feedback to CrossRef (e-mail: rlammey@crossref.org) on its usability. The tool is currently being improved to deal with some of the issues raised during the beta-testing process—namely the reference extraction from certain document formats and the recognition of a wider variety of languages.

Additional Features

The tool also presents members with a ‘Statistics’ section for members, providing them with an overview of their participation in CrossRef. Fig. 6 shows an example of this screen, giv-
ing CrossRef members a place where they can see, for current content and for backfiles, information such as the number of DOIs they have deposited, and the percentage of these that have CrossMark, FundRef (http://www.crossref.org/fundref/) and license information, or contain references, full-text links or ORCID.

The provision of this screen aims to let publishers know how 'complete' their participation in CrossRef is, and give them an easy way to see the additional services that they can participate in by providing CrossRef with additional metadata. They will also be able to verify that the licenses they have deposited are reachable and see the funders who are most commonly cited in the research they publish (if they participate in FundRef) (Fig. 7).

Adding Additional Metadata: the Web Deposit Form and CSV Upload Options

The previous section of this article mentions the fact that participating in additional CrossRef services often involves providing additional metadata to the basic bibliographic metadata needed to deposit a DOI. This section will look at ways of depositing additional metadata for new content, and for content that has already been registered with a DOI at CrossRef.

Current Content

Small publishers depositing DOIs for new content often use the CrossRef web deposit form [1] as a simple way to deposit without having to use extensible markup language (XML). The web deposit form provides publishers with fields where they can type in the information related to the article. Cross-
Ref has added fields to the web deposit form to help publishers use it to deposit both CrossMark information and the full-text links that can be used to index content for publishers participating in the CrossCheck service.

To look at the CrossMark additions first, when a publisher comes to add an article via the Web Deposit Form, they will see the screen shown in Fig. 8.

The publisher can complete this information and when they deposit using the web form, their metadata will be CrossMark-compliant and they will be able to complete the follow-up steps required to participate in this service (Technical implementation information is available at: http://crossmarksupport.crossref.org/technical-implementation-guidelines/).

The other field added to the web deposit form in April 2015 is the 'URL*' add iParadigms URL field. This field is relevant to publishers who want to participate in the CrossCheck service. Publishers who participate in CrossCheck do so to get access to the iThenticate tool to screen documents for originality. However, an additional requirement of CrossCheck participants is that they need to make their content available for indexing by iParadigms (who provide the iThenticate service). iParadigms index content from CrossCheck member publishers so that it can be added to the CrossCheck database. That way, all participating publishers can check their content for originality against their own publications, and against the publications of the 665 CrossCheck members.

Publishers wanting to enable indexing on their articles should do so by providing what CrossRef calls ‘as-crawled URLs’ (links to the full-text of the content) in their CrossRef metadata. These as-crawled URLs allow iParadigms to go directly to the full-text of the article, crawl it, and then add it to the CrossCheck database. For publishers using the Web Deposit form, when they come to provide the article-level information they can enter the full-text link in the ‘URL*’ field, and when they deposit the DOI with CrossRef, that content will be enabled for indexing as per the CrossCheck requirements.

Note that as well as providing as-crawled URLs, subscription publishers would also need to enable access for the iParadigms crawler by giving access to their IP (internet protocol) ranges, which are listed on the CrossCheck home page on the CrossRef website [2].

Adding Metadata to Backfiles: CSV Upload Option

Although adding links to current content is important, being able to add additional metadata to existing DOIs in a simple way is also something that publishers need to do on an increasingly regular basis. In order to help with this, CrossRef has created the option for publishers to upload comma separated value (CSV) files.
containing the additional metadata related to each DOI. If publishers need a list of their DOIs as a starting point in this process they can ask CrossRef Support to provide this information.

When the publisher has a list of their DOIs, they can add columns to the CSV file to provide funding information, license metadata and full-text links to help aid participation in FundRef and CrossRef Text and Data Mining Services (http://www.crossref.org/tdm/index.html). More granular detail on the format of the CSV file and some examples are available in the CrossRef help documentation [3].

There is also a specific CSV upload format for publishers who want to add full-text links to their existing DOIs for CrossCheck indexing purposes [4]. Again, they can provide a list of their DOIs, plus a corresponding column showing the full-text links under the column heading < item crawler = "iParadigms" >.

When publishers have prepared their CSV files, they can then upload them to CrossRef. This is also done via the web deposit form. On the landing page for the form, publishers can select the upload option 'Supplemental-Metadata Upload BETA'. When they do this, the screen will refresh to show the fields shown in Fig. 9.

Publishers can select the file they want to upload, enter their CrossRef credentials and the email address the submission report should be sent to. They can then click 'upload CSV data' to complete the process.

When a file is successfully uploaded, the XML created from the CSV file, plus the deposit report will be sent to the email address that the publisher has listed so that they can check if the deposit succeeded. In some occasions, DOI ownership issues (who has the ability to update a DOI) may need to be resolved via CrossRef Support as these may cause some deposits to fail, but the reasons for failure will be listed in the deposit report so that publishers can follow up on these.

Conclusion

As CrossRef’s membership grows and becomes more diverse, it is becoming increasingly important for CrossRef to be able to support all of its members in a variety of ways. A large part of this is providing more technical tools for small publishers to enable them to participate in the growing range of CrossRef services. The linking console, additions to the web deposit form and the CSV upload option are early steps in the process, and CrossRef will continue to add to these toolsets to enable all publishers to add value to their publishing processes and benefit their author and reader communities.

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

References

Analysis of changing pattern of citation metrics of the *Journal of Neurogastroenterology and Motility*

Gwang Ha Kim¹, Nayoung Kim²

¹Department of Internal Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan; ²Department of Internal Medicine and Liver Research Institute, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea

Introduction

The *Journal of Neurogastroenterology and Motility* (JNM) was launched in January 2010 through the conversion of the *Korean Journal of Neurogastroenterology and Motility* which had been published in 1994 through 2009 as the official journal of the Korean Society of Neurogastroenterology and Motility. The main aim of JNM is to provide worldwide researchers, especially Asian researchers, an accessible platform for the publication of their research results in the field of neurogastroenterology and motility. Owing to the active participation of society members and devotion of the editorial board members, JNM was finally accepted as one of the Science Citation Index Expanded (SCIE) journals in 2013. As a result, JNM now becomes an official joint journal published by the Korean Society of Neurogastroenterology and Motility, the Thai Society of Neurogastroenterology and Motility, the Indian Motility and Functional Disease Association, the Chinese Society of Gastrointestinal Motility, the South East Asia Gastro-Neuro Motility Association, the Taiwan Neurogastroenterology and Motility Society, and the Asian Neurogastroenterology and Motility Association. However, the impact factor (IF), one of influential factors of journals, tends to decrease recently. In this essay, we would like to evaluate the possible causes for the decreased IF and then propose the methods to increase the IF in JNM.

Current Status of IF in JNM

As stated before, the active participation of society members and devotion of the editorial board members enabled the IF of JNM to increase steadily, and the IF was 2.698 in 2013 when JNM was accepted as a SCIE journal. The IF of 2.698 ranked 31st among 75 journals in the categories of gastroenterology and hepatology in SCI(E) journals. In addition, the IF of JNM in 2013 was released as 3.537 (18.1 percentile) ranked 24st in the Scopus. We expected the IF would increase further after JNM became a SCIE journal. Disappointingly, the self-analyzed IF of JNM in 2014...
was found to decrease to 2.194 in the end of March. Of course, this is not final IF and it could be changed a little until the time when the new IF will be announced, May 2015. However, the tendency of decrease in IF comes to surprise the editorial board members, and so the publication committee of JNM evaluated the possible causes for the decreased IF so that appropriate strategies could be implemented to increase it.

Possible Causes Explaining Decreased IF in JNM

First possible cause is that the denominator used in calculating the IF had increased. The number of review articles, original articles and case reports is included in the denominator of IF. The number of original articles per issue between 2013 and 2014 was 10 while the number of original articles per issue between 2011 and 2012 was 7. Therefore, it appears that the increase in number of citations could not catch up with the sudden increase in the number of original articles in recent issues. Furthermore, we found “How to interpret a functional or motility test” was included in the analysis of IF by Thomson Reuters. Second, the poorly cited sections are present in JNM. The frequency of citations for sections such as “Case report” and “How to interpret a functional or motility test” was very low (less than 1). Third, the frequency of citations for recently published review articles decreased, mainly because of the exhaustion of influential review article subjects and authors. Fourth, self-citation of papers published in JNM was not satisfactory. In fact, the self-citation IF in JNM also decreased from 0.417 in 2013 to 0.233 in 2014. It could be due to the authors of published papers in 2014 did not know much about the JNM papers in 2012 and 2013. This might suggest that significant portion of new authors in the world were not familiar with JNM papers. Finally, there could be a tendency to accept relatively low quality or less interesting papers. There are several reasons behind this; sudden increase in the number of submitted papers, inadequate filtration of these papers due to limited number of reviewers, especially in the basic science field, generosity towards papers from Asian countries, and increased acceptance of out of mode “Me too” papers and papers with less interesting subjects.

How to Increase the IF of JNM

Although the IF itself is not absolute for evaluating the importance of journals, most investigators regard IF as important in choosing the journal to which they submit their papers. Considering this situation, are there any methods to increase the IF of JNM? The publication committee of JNM had discussed extensively about this issue and brought up with the following strategies to increase the IF. First, it is essential to slim down the JNM. For this, removal of poorly-cited sections such as “Case report” and “How to interpret a functional or motility test”, consideration of decreasing the number of published original articles (to 8) and review articles (to 2-4), and proper use of early on-line publications are required. Second, improvement in the review system for submitted manuscripts is needed. Allocating associate editors to more specialized fields efficiently, maintaining quality and duty of editorial board members, creating a pool of specialized reviewers according to the subjects in order to decrease reviewers’ burden, rewarding high-quality reviewers appropriately, or creating a link to JNM papers similar to the submitted manuscript in the review system can be considered. Third, highly citable subjects are required. To achieve this, it is necessary to ask experienced authors to write review articles as well as original articles. It is also important to find new pioneering authors, especially young investigators, to be able to publish high-quality papers consistently, and potential subjects after analyzing the highly citable papers. In addition, there is a tendency that meeting-related publications are poorly citable and that a clinical study is more likely to be cited when compared to a basic study in case of original article. Finally, a few other methods to increase the IF are as follows; to increase the self-citation rate, to encourage authors to cite “How to interpret a functional or motility test” in the papers about motility tests, to encourage editorial board members to cite the papers in JNM, to contact authors having highly cited papers consistently, to provide feedback to authors about citation results, or to release e-pub as soon as possible for the most accepted articles.

Consideration in Setting Up the Strategies to Increase IF

As stated before, the IF is important to gauge the influence of journals. However, before applying the above-mentioned strategies to increase the IF of JNM, there are some important points to consider. First, this situation could be a transient phenomenon occurring with most journals after being indexed as SCIE. If so, then the IF would recover to the previous level or even surpass it gradually as time goes by. Second, the balance between clinical studies and basic studies and between major subjects and minor subjects is necessary in JNM irrespective of IF. Finally, the aims of JNM such as providing researchers, especially Asian researchers, with a platform for publication of their results and increasing the base of investigators engaged in the field of neurogastroenterology and motility should be preferentially considered.
Conclusion

Herein, we evaluated the possible causes for the decreased IF and suggested the methods to increase the IF in JNM. Giving consideration to the facts that it has taken only 2 years after JNM was accepted as a SCIE journal and that this situation might be transient, it seems that are somewhat impatient. However, decreased IF has made us to look back into past 2 years. As a result, we can find important issues for development of JNM. Last, we hope that our strategies will be helpful for other Korean Journals which are in similar situation after accepted as SCI(E) journals.

Conflict of Interest

No potential conflict of interest relevant to this article was reported.
A call for greater editorial responsibilities

Jaime A. Teixeira da Silva
Faculty of Agriculture and Graduate School of Agriculture, Kagawa University, Kagawa, Japan (Retired)

Introduction

The responsibility for what lies within a journal’s contents lies solely with the editors, including the editor-in-chief and the publisher. Except in cases of misconduct where authors have abused the publishing process, the final published product implies a direct approval of the journal editors, usually resulting in benefits (financial, profiles, etc.) for the publisher. As fame, profit and other benefits (such as impact factors or other metrics) are equally derived from this process, editors and publishers must be held accountable for what is published, as this process also forms part of the fabric of corporate responsibility. Within the publishing framework, authors, peers, editors, the editor-in-chief, and the publisher, all have a set of clearly defined responsibilities [1]. Within the sub-category of authors, the corresponding author also has a particular set of unique responsibilities [2]. In addition to this, as exemplified by the fourth clause of the ICMJE (International Committee of Medical Journal Editors) guidelines for authorship [3], multiple authors are to be held equally accountable within a public framework, by designating them as corresponding authors, with one being assigned the responsibility for submitting the paper and dealing with related issues. This paper focuses on the editor base, and specifies why greater accountability is required.

Reasons for Greater Editorial Accountability

Many, if not most, leading science, technology and medicine (STM) publishers, are members of the Committee on Publication Ethics (COPE) [4,5], with almost 10,000 paying member journals. As COPE members, the journals themselves and the editors who lead these journals, are expected to abide by a code of conduct (CoC) [6] that specifies rules and regulations demarcating editorial activities and responsibilities. One cause for the apparent increase in the number of retractions and dissatisfaction amongst the general scientific public, as exemplified by blogs and web sites like www.scholarlyoa.com, www.retractionwatch.com and www.pub-peer.com, is that the peer review process is imperfect [7]. One of the causes for this is that amongst many STM publishers, even as of 2015, there is a lack of standardization of several parameters such as definitions regarding authorship [8]. The issue of authorship is however, not the focus of this essay.

In general, top ranking journals tend to take the task of peer review seriously. Even so, the process has limitations, including the limited number of sets of eyes scrutinizing a paper. With
an increase in the number of reviewers or editors, there is an increase in the number of errors detected. The number of published errors will decrease if authors are able to rectify these problems. Of course, this is an ideal scenario, not seen in most journals. In the best case scenario, peer review is a double-blind, and at the most 4 or 5 peers are vetted. In many cases, however, these peers are suggested by the authors, and thus the process lends itself to potential bias. Even if no conflicts of interest exist with the suggested peers, the fact that an author is requested by an editor or a publisher to select experts for an objective appraisal or critique of the work, is itself highly problematic and biased. Within a narrow field of science, one may argue that it is difficult to identify new peers who are in no way connected with other scientists. Thus the way in which peers are vetted and traditionally considered, is faulty, simply because at some point, conflicts of interest, bias, or a lack of neutral perspectives will be encountered. Within such an imperfect system, it is more than evident that errors will creep into published papers, despite apparently efficient editorial filtering processes. The decrease in the number of peers or editorial checks, results in an increasing risk of errors entering literature.

Conclusion

We are, as I see it, at a crossroads in the publishing network, where editors and publishers are failing to assume all of the responsibilities binding them in their CoCs, that they themselves have approved and agreed to conform to, or face public ridicule by the scientific community. Is it possible that not all editors are fully aware of the clauses and conditions that bind them in the peer review and publishing process? Take, for example, the COPE CoC. How does it hold peers accountable, even though ultimately it is editors who approve peer comments and suggestions for processing by authors? Either way, the literature continues to remain potentially highly corrupted, with the term “corrupted” implying the presence of errors or more serious issues such as plagiarism, falsified or duplicated data, and other products of acts of misconduct. Wager [9] recently emphasized that retractions exist to correct literature, and are especially useful for dealing with the latter category of cases of misconduct. Yet, retractions only serve to correct the largest, most evident ills of the literature [10]. Wager [9] also points out that there appears to be resistance by editors and publishers in correcting smaller errors that would require errata (errors by the authors) or corrigenda (errors by the publisher). Despite seeing a wave of errors being indicated daily at PubPeer, for example, why does the editorial base of STM publishers remain so reticent towards correcting this literature?

One way suggested in overcoming some of the weaknesses associated with the peer review process is open peer review. This also has inherent weaknesses, such as the number of digital object identifiers that exist per manuscript, or how to reference them. So, the system is currently in a state of self-appraisal, and evolution. Yet, despite this apparent positive trend in conversation related to the publishing process, few widely adopted solutions have been implemented. The most important concern, is the lack of the adaptation of post-publication peer review to remedy errors in published literature [11]. One has then to question the veracity of the COPE CoC, or rather its implementation by COPE member journals and their editors, including editor-in-chiefs. COPE member editors, and COPE member journals are in direct violation of their own rules if errors reported to such journals remain uncorrected. Giorgini et al. [12] clearly state that the function of having a CoC is to create a base of credibility, fairness, professional conduct, ethical decision-making and corporate behavior. However, if editors do not correct literature through post-publication peer review, either following disclosed identities, or through anonymous reports, then should they not be dismissed from their positions? Should not the publisher also suffer a direct penalty as a result of violating its own self-imposed rules?

Even when published literature is highly corrupted [13], there seems to be little appetite by editors and publishers to correct these errors. However, the issue is not about desire or appetite, it is about academic and corporate responsibilities of editors and publishers respectively. The responsibility becomes greater for COPE members, who pay an annual premium to sell their ethical image. Therefore, public shaming of editors and publishers who present a pseudo-ethical front, but who do not practice the issuing of errata, corrigenda or retractions in line with their written CoCs, must be shamed and called out in public with the objective of applying pressure to ensure that the erroneous literature is corrected.

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

References

Contributions of the comic strips on scientific articles

Beom Sun Chung, Min Suk Chung

Department of Anatomy, Ajou University School of Medicine, Suwon, Korea

Introduction

The corresponding author has drawn the comic strips, entitled “Dr. Scifun,” which depict scientists’ various events with funny jokes. Among the hundreds of episodes of comics, decades deal with scientific articles [1]. Editor of the journal, Science Editing, decided to serially publish the episodes about articles in every issue [2]. It was because Science Editing, the journal about journals, also includes light topics in its scope (Fig. 1) [2]. The purpose of this essay is to make known how the comic strips on scientific articles can contribute to the interested persons.

Fig. 1. An episode of comic strip for the scientists, published in the last issue of Science Editing. The title involves the author name, homepage address, and the episode number. Additional explanation is located at the right bottom side. This episode is satirizing the scientists’ strain about articles [2].

This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Fig. 2. Upcoming episodes of comic strips for the graduate students. The importance of reporting one’s research through journal articles is emphasized with a historical metaphor (A). The logic of making a table for the article is presented with an intriguing example (B). The roles of authors in an article are elucidated (C).
Through the comic strips, scientists can develop a bond of sympathy. Regardless of the separate fields, researchers have the common denominators about articles. The importance of wording, the difficulty of getting reviewed, and the joy of getting published are almost same among the spheres. These stories are depicted in funny comic strips. Sharing the jokes of the comics, the scientists from diverse fields may get on with each other. The good atmosphere would hopefully play a part in the interdisciplinary convergence research (Fig. 1) [2].

Cooperation of researchers is also explained in the comics. After reading them, graduate students may learn how to work together in lab, especially with their academic advisors (Fig. 2).

When seeing scientists depicted in the comics, laypeople are expected to feel a personal touch of the scientists. Since the comic strips liken article writing to daily life, laypeople may easily grasp what scientists’ jobs are. Main protagonist, Dr. Sci-fun, shows his zany personality, breaking the expected solemnness of scientists. Paradoxically, exposing an embarrassing aspect of the scientists will tear down the walls between scientists and others (Fig. 3).

Once feeling close to scientists, laypersons may develop more interest in the scientific news and the scientific lecture.
Fig. 4. An upcoming episode of comic strip for the journal. The ethics of writing journal articles are explained, with the comparison to making cartoons.

Once the juvenile readers, who dream of becoming scientists, realize that writing skill is essential to scientists, the youngsters will diligently learn composition in their school.

Comic Strips for the Journal, Science Editing

The newborn journal, *Science Editing*, is free to fulfill ingenious ideas [3]; one of them is publishing these comics [2]. As far as we know, this courageous attempt is the first among innumerable academic journals. The topics of *Dr. Scifun* and those of *Science Editing* can enter into a common interest. An instance is the plagiarism and duplication of articles. Our comics possibly give tiny help to *Science Editing*, fostering a scientific article culture (Fig. 4).

Conclusion

The beneficial science comic strips may be further utilized. For the lectures about the skills and ethics of article writing, our comic strips can be put in the presentation slides or handouts. The image files of comics are procurable on the homepage (anatomy.co.kr). While this *Dr. Scifun* is made from the perspective of professors, another cartoon, *PhD Comics*, is from the perspective of graduate students [4,5]. Likewise, every work of comics has a distinct individuality. Authors expect more and more comics on scientists’ activities to be manufactured, promoting fruitful communication about science and articles [6].

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant number 2014R1A1A2053405).

References

One event, several perspectives:
a reflection on the 2015 Council of Science Editors annual meeting

Hyungsun Kim
School of Materials Engineering, Inha University, Incheon, Korea

The 2015 Council of Science Editors (CSE) annual meeting was held at the Loews Philadelphia Hotel in Philadelphia, Pennsylvania from May 15-18, 2015. Over four days, short courses (May 15 and 16) and a conference (May 17 and 18) were held for editorial professionals and publishers. The meeting was attended by 400 participants from 15 countries, most of whom were editors involved in the field of medicine: 397 participants were from the United States, 16 from Canada, 4 from the United Kingdom, 3 from Brazil, 3 from Japan, and 1 each from South Korea, New Zealand, China, Switzerland, Croatia, Mexico, the United Arab Emirates, India, Norway, and Nigeria.

I spent the four days of the conference thinking about the systems and programs I could adopt for the management of the Korean Council of Science Editors (KCSE) and the Council of Asian Science Editors (CASE), as well as potential guest speakers for KCSE and CASE conferences and workshops. I write this report on the 2015 CSE annual meeting in the hope that more South Korean and other Asian editors will attend future meetings to gain useful information and meet their fellow editors. My report describes the content of the event and my experience of it and addresses its logistics and infrastructure to enable the planning of conferences in Korea to borrow from the CSE’s best practices (For details of the 2015 CSE annual meeting, please visit http://www.councilscienceeditors.org).

Four short courses were offered during the first two days of the meeting. The short course for journal editors was a two-day program, while the others (publication management, journal metrics, and manuscript editors) were all single-day programs. I attended the journal editors short course. William L. Lanier, the Editor-in-Chief of Mayo Clinic Proceedings and longtime organizer of the program, put together a well-structured curriculum and invited carefully selected speakers based on his extensive experience. He attended the course, pointed out anything the speakers missed, and answered questions with witty jokes and anecdotes from his experience. During group discussions, participants brought up difficulties they had experienced and received advice. Among the difficulties that were discussed, one was, “How do you select a good journal reviewer?” In other words, in light of recent scandals in regard to the recommendation and registration of false reviewers, which may have compromised the peer-review processes of some well-known journals, it was evident that many participants were painstakingly...
One downside of this course, however, was that its content partially overlapped with that of the main conference. In the course, the ratio of lectures to participant discussions was 6:4; thus, the course appeared to be more helpful to editors with some experience who could use the course to share their experiences as well as acquire knowledge. The course might have been a little overwhelming for beginner editors who attended with the intention of obtaining new information. Moreover, editors in the broader fields of science and technology might have felt a bit disconnected: the presented cases and speakers were mainly associated with *Mayo Clinic Proceedings* or biomedical journals and most participants were editors in the medical field. At the end of this short course, all participants received certificates of attendance and took a commemorative photograph together.

On the night of the 16th, the last day of the short courses, a welcome reception for new members was held to launch the main conference. At the reception, Tim Cross, the president of the council, introduced present and former board members to me and we all took pictures together (Fig. 1). He also introduced me to the president-elect, Angela Cochran. The CSE presidency has a term of one year because there are many editorial professionals waiting in line for the title. However, presidents contribute to the management of the council beyond their one-year term for a total of three years, serving in the positions of president-elect and former president. This system distinctly characterizes the management of the CSE and is quite different from the current system at KCSE and CASE. The CSE was established in 1957 and has a 50-year history. The organization started de facto operations in 2000; it has approximately 800 current members. However, KCSE was launched in 2011 and CASE in 2014, so the current three-year term for KCSE and CASE board members is believed to be a necessary measure for organizational stability.

May 17 was the first day of the main conference. The opening ceremony was held at 8:30 am and lasted around 30 minutes; the president delivered an opening address and reported on the council’s activities of the past year. All the material was visible on two screens placed on either side of the room. Explaining the council’s mission and goals, made a presentation focusing on the council’s primary accomplishments during his tenure; he emphasized the 9% increase in membership over 2014 and 2015. Finally, he gave an introduction to various overseas activities spearheaded by the Middle East-dominated Asian Council of Science Editors (ACSE), KCSE, and Brazilian Association of Science Editors (ABEC), the latter of which was originally fostered by the CSE itself. When KCSE was called upon, I extended a greeting to all members of the council as vice president of KCSE.

The CSE’s new president was also inaugurated during the opening ceremony. Tim Cross, the current president, declared Angela Cochran (journals director of the American Society of Civil Engineers) the next president. The inauguration ended with Mr. Cross handing over a gavel to Ms. Cochran on stage. Then, Ms. Cochran, on behalf of CSE, presented some gifts to Mr. Cross—CDs and other things relevant to his hobbies—as a token of appreciation. Ms. Cochran also introduced her pledges as the new president in a five-minute inaugural address. She stressed the importance of international relations, short courses, and education enhancement. Mr. Cross moderated the opening session himself and later introduced the keynote speaker.

Many people attended the keynote address. G. Sayeed Choudhury gave the one-hour address based on the theme “The Research Data Revolution” and emphasized the concept of big data and its importance: “The amount of data is exploding every year and funding bodies are beginning to suggest policies for data-sharing and retention for their grantees. With these challenges, publishers have vast opportunities to help establish standards for curation, preservation, and reproducibility. With these opportunities, editors and publishers are tantalizingly poised to develop new tools and services to provide to contributors, libraries, and grantors.” For those interested in the recent issue of the data explosion in journal publishing, this lecture would have been very informative.

The morning sessions ran from 10:30 a.m. to noon. Four sessions on different topics were held simultaneously in four different rooms. Since KCSE is scheduled to offer its first-ever workshop on journal review next month, I attended the “Different Forms of Peer Review” session to learn about new ap-

Fig. 1. On the left, president Tim Cross; in the center, vice president Patricia Baskin (next-term president, 2016-2017); on the right, the author.
Proaches and changes in the United States. Last year alone, 2.5 million research papers were published in 34,000 journals. With the constant increase in the number of journals, reviewing manuscripts has become a challenge. However, there is no established standard for journal reviewing. Therefore, objective evaluation tools are in development. In the “Different Forms of Peer Review” session, two such tools in the making were introduced: Rubriq Scorecards, which grant professional qualifications to reviewers, and e-Life.

From 1:00 to 2:00 p.m., I attended the “Managing Journals in a Global Context” session and listened to how manuscript editors from Canada, Mexico, and the United States are managing their journals. Their problems and solutions were similar to those faced by KCSE editors working on the publication of journals for small-scale academic societies. However, their use of social media to increase the number of citations impressed me because South Korean editors do not widely use Facebook or Twitter.

Another session, “Preparing a Manuscript When English is a Second Language,” was intriguing, so I sat in the front row. Speakers from WoS and Editage presented; they reported that predatory practices (http://scholarlyoa.com/publishers/) and ethics were the most important issues in Asia. As a result, the speakers emphasized the need for reviewers to undergo special reviewer training for manuscripts submitted from non-English speaking countries, particularly from Asia, and the need for cooperation with copyeditors before the review process starts.

In the session “The Next Generation of Researchers,” the speakers guided the audience in determining answers to the question, “How can we encourage young researchers and high school students to publish valuable research?” by sharing several case studies from Canada and the United States. One speaker suggested, “Senior high school students understand their mistakes only through the peer review process.” Another speaker advocated, “During the review process, we should try to find ways to improve the manuscripts by making suggestions rather than by rejecting the manuscripts,” while another commented, “Young researchers’ imagination is limitless.” Rather than a slide presentation, this session was designed like a panel and allowed speakers to share their experiences and then answer questions from the audience.

From 5:00 to 7:00 p.m., the president’s reception and seven poster presentations were held (Fig. 2). I presented a poster entitled “Opinions of Korean science editors on open access policies, editorial difficulties, and the government’s support for publishing.” It was related to the findings of a research foundation’s 2013 policy project, which disclosed the opinions of South Korean science editors and proposed a plan to efficiently utilize the government’s financial support. My co-authors were KCSE board members Hye-Min Cho, the chairperson of the Committee on Manuscript Editing, and Professor Sun Huh, the chairperson of the Committee on Planning and Administration. The number of posters presented was much lower than I had expected, and when I asked the organizers, they told me that it was a typical year. It was hardly comprehensible why such a small number of posters were presented at a conference with 400 participants. In any case, the participants voted for the most outstanding author among the seven, and the winner will be exempt from paying next year’s CSE annual meeting registration fees, which are about 600 US dollars for CSE members.

A total of 21 exhibitor booths were on display. Among these, two booths (for ACSE and for the Asian Network of Scientific Information) were sponsored by ACSE; these booths actively promoted their organizations to CSE members. Currently, there are two councils for science editors in Asia: one is ACSE, which was organized by scholars in the United Arab Emirates and is mainly made up of Middle Eastern members, and the other is CASE, which is mainly made up of Southeast Asian members with South Korea as the founder and central organizer. I took photos with the president of the ACSE and promised to strengthen our ties in the future.

The booths were set up in the huge Exhibit Hall, which was also used for other purposes—participants enjoyed coffee breaks, luncheons, and dinner there as well as the poster presentations. To attract more visitors to the exhibitions, the event coordinators handed out cards marked with 21 boxes so that participants could collect stamps or signatures from the booths they visited. Those who collected all 21 could then enter a raffle and win an iPad. I thought this was a brilliant idea and vowed to use it at next year’s KCSE events. Visit, enter, and win!
Finally, the last day of the conference arrived. I realized that May 18 fell on a Monday, which was surprising since Sundays are usually reserved for religious activities or time with family in South Korea and conferences are usually scheduled on weekdays; however, at CSE, the events ran through the weekend. I asked a former CSE president, who replied that they have been scheduling the conference like this for years now, despite some complaints from their members.

Although it had been days since I left South Korea, I was still suffering from jet lag. I was also exhausted from the packed four-day conference schedule, so I attended the plenary address comforting myself that I would be homebound the following day. The speaker was Clive Thompson, who gave a one-hour talk on “The Future of Thought.” Most participants were excited to attend his talk since he is the famous author of Smarter Than You Think. Even before his talk, Mr. Thompson and the CSE president were busy taking commemorative photographs, which was reflective of their popularity among science editors.

When Mr. Thompson began his talk, I could feel how interested editors were in a famous author like him. His reputation as a gripping speaker was true—the audience was instantly captivated. Moreover, his presentation slides were like works of art. He clearly illustrated his points by minimizing the amount of text and inserting one-sentence summaries of each topic against picturesque backgrounds. Among his memorable quotes were the following: “I used to be an avid gamer. I am 45 years old, but whenever I walk the streets and see billboards or other displays, I think of them as part of a game... Every day, people learn about the world, form ideas, and share them... Communication on social networking sites is important... The two-way communication of social networking sites creates new possibilities that otherwise wouldn’t have been achievable on our own... In the future, it’s important to think together, rather than think alone. We need more cooperative thinking.”

From 11:30 am to 1:00 p.m., the highlight of the four-day meeting, the awards luncheon, ensued; all participants attended the award ceremony and enjoyed the luncheon. At the event, CSE gave awards to 10 members. The winner of the grand prize delineated his accomplishments in a five-minute speech. Afterwards, participants sat around tables in groups of eight to enjoy a pleasant meal.

Seats in the afternoon sessions were half-empty since many participants left after the luncheon. At the “Journal Training Wheels: Building a Pipeline of Future Authors, Reviewers, and Editors” session, editors shared their experiences with managing journals. I was impressed by their use of social media and the way they resolved conflicts that arose from peer reviews.

Finally, the 2015 CSE annual meeting came to an end. Compared with the KCSE’s conferences and workshops, the CSE was unique in the following aspects: 1) CSE provided a mobile app service for the first time this year. The app contained helpful real-time updates on the conference agenda (e.g., details of each session, including titles, abstracts, photos, and bios of speakers). This feature was particularly memorable since it was a convenient alternative to thick paper packets; participants could note their own schedules on their smartphones and navigate the conference halls. 2) At each session, CSE allotted 20 to 30 minutes for Q&A, making sure there was enough time for discussion between the speakers and the audience, and a variety of opinions were exchanged during these earnest conversations. This format differed from South Korean conferences, where lectures are one-way presentations and many are still unaccustomed to debating. 3) CSE put together each session based on thorough research and analysis into topics that would interest participants. The session moderators were all experts in their fields and CSE organized each session with a good mix of professors, journal manuscript editors, and publishers. 4) CSE board directors and members were mostly editors-in-chief, manuscript editors, and copy editors or publishers. More than half of the participants in this year’s meeting were women, manuscript editors, and copy editors, and many students attended as well.

In addition to journal editors-in-chief, editors, and publishers, representatives of schools and companies involved in data management also attended the conference. Considering the fact that in addition to participants from the US, who constituted the majority, 36 people from 15 different countries attended this US-based conference, I thought the 2015 CSE annual meeting was a great success, not only in terms of the number and range of participants and speakers but also in terms of the organization and quality of topics chosen. As a representative of South Korea, I tried to observe many things at this year’s meeting, but I feel like I ended up seeing only the tip of the iceberg. I want to attend next year’s CSE Annual Meeting, scheduled to take place May 14-17, 2016 in Denver, Colorado, with colleagues from KCSE, with whom I hope to take the time to delve into the various programs and enjoy the event more fully.

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

Acknowledgments

This work was supported by a travel grant from the Korean Council of Science Editors (2015).
I drew this one to emphasize that scientists should stand together in the lab. Being united is necessary to achieve the common goal (such as hooking up with girls or getting good research results). This one also includes the precious lesson that all occupations are equally honorable; a chance should be given even to incompetent people, so that they should make much of it.
They say a scientist's work is all about researching and writing. Even if you do a great job but fail to write a decent paper, you can't expect your paper to be carried to academic journals, thus getting little recognition. How to hook up with girls is pretty much a joke, while the way of writing a paper is a truth. Any scientist who has written a paper would be able to tell the difference between the joke and the truth.

Since lots of SCI journals are dominated by American scientists, papers from the world should be suited for their taste. The American editors are likely to accept papers that are funny such as papers with an amusing anecdote related to the field. Do you want your manuscripts to be accepted by SCI journals? Then why don't you make your colleagues laugh right away?
The first step to draw this cartoon is getting themes. I don't read textbooks or scientific papers to get the themes for the science comic strips; I rather read newspapers and popular books or watch TV. I also get some ideas while I hang out and chitchat with other scientists. That is, to draw a cartoon, I need to know things wide rather than deep. In other words, I have to play.

Conflicif of Interest

No potential conflict of interest relevant to this article was reported.

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant number 2014R1A1A2053405).
Addendum: The *Korean Journal of Internal Medicine*’s long road to being listed in the Science Citation Index Expanded

Chul Woo Yang
Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea

I would like to clarify the meaning of a sentence from article entitled “The *Korean Journal of Internal Medicine*’s long road to being listed in the Science Citation Index Expanded (DOI: http://dx.doi.org/10.6087/kcse.2014.1.118).” Original description was as follows:

The First Challenge toward Gaining Entry into the SCIE

The first submission to the SCIE for registration was sent in July 2009 after two years of preparations. At the time, the impact factor (IF) of the KJIM was 0.41, and the journal was ranked 111th out of 133 journals of internal medicine listed on the Web of Science. The result was disappointing; we received a rejection letter from Thomson Reuters in September 2010, a year after submission, stating that the rejection was due to the low IF of the KJIM.

After reading this, Ms. Pippa Smart, editorial board member of *Science Editing* inquired of me why the journal with impact factor 0.41 was not indexed in Web of Science at the time of submission because any scientific journal with impact factor means that it is SCIE journal.

I found that it may somewhat confusing because impact factor 0.41 was not impact factor presented in Journal Citation Ranking by Thomson Reuters. The impact factor 0.41 was manually calculated one from Web of Science. Therefore, I would like to add as followings for the clarification of meaning of impact factor 0.41.

The first submission to the SCIE for registration was sent in July 2009 after two years of preparations. At the time, the impact factor (IF) of the KJIM manually calculated from Web of Science was 0.41, and the journal was ranked 111th out of 133 journals of internal medicine listed on the Web of Science.

I appreciate Ms. Pippa Smart who pointed out it for clarification.

Conflict of Interest

No potential conflict of interest relevant to this article was reported.
Corrigendum

Correction of the figure legend in the article

Editorial Office, Korean Council of Science Editors

The year in the explanation of Fig. 1 of the article entitled “Scientific and technological journals in Vietnam: the current state and direction of development” written by Banh Tien Long and Nguyen Duc Toan (Sci Ed 2015;2(1):18-21, http://dx.doi.org/10.6087/kcse.31) was mistyped. Correct description is “Fig. 1. The number of articles published in scientific and technological journals in Vietnam from 2010 to 2014.” The editorial office apologizes for this error and inconvenience.
1. GENERAL INFORMATION

Science Editing (Sci Ed) is the official journal of the Korean Council of Science Editors (KCSE). Anyone who would like to submit a manuscript is advised to carefully read the aims and scope section of this journal. Manuscripts should be prepared for submission to Science Editing according to the following instructions. For issues not addressed in these instructions, the author is referred to the International Committee of Medical Journal Editors (ICMJE) “Recommendations for the Conduct, Reporting, Editing and Publication of Scholarly Work in Medical Journals” (http://www.icmje.org).

2. COPYRIGHTS AND CREATIVE COMMONS ATTRIBUTION LICENSE

A submitted manuscript, when published, will become the property of the journal. Copyrights of all published materials are owned by KCSE. The Creative Commons Attribution Non-Commercial License available from: http://creativecommons.org/licenses/by-nc/3.0/ is also in effect.

3. RESEARCH AND PUBLICATION ETHICS

The journal adheres to the ethical guidelines for research and publication described in Guidelines on Good Publication (http://publicationethics.org/resources/guidelines) and the ICMJE Guidelines (http://www.icmje.org).

1. Authorship

Authorship credit should be based on 1) substantial contributions to conception and design, acquisition of data, and/or analysis and interpretation of data; 2) drafting the article or revising it critically for important intellectual content; 3) final approval of the version to be published; and 4) agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. Every author should meet all of these four conditions. After the initial submission of a manuscript, any changes whatsoever in authorship (adding author(s), deleting author(s), or re-arranging the order of authors) must be explained by a letter to the editor from the authors concerned. This letter must be signed by all authors of the paper. Copyright assignment must also be completed by every author.

• Corresponding author and first author: Science Editing does not allow multiple corresponding authors for one article. Only one author should correspond with the editorial office and readers for one article. Science Editing does accept notice of equal contribution for the first author when the study was clearly performed by co-first authors.

• Correction of authorship after publication: Science Editing does not correct authorship after publication unless a mistake has been made by the editorial staff. Authorship may be changed before publication but after submission when an authorship correction is requested by all of the authors involved with the manuscript.

2. Originality and Duplicate Publication

Submitted manuscripts must not have been previously published or be under consideration for publication elsewhere. No part of the accepted manuscript should be duplicated in any other scientific journal without the permission of the Editorial Board. If duplicate publication related to the papers of this journal is detected, the manuscripts may be rejected, the authors will be announced in the journal, and their institutions will be informed. There will also be penalties for the authors.

A letter of permission is required for any and all material that has been published previously. It is the responsibility of the author to request permission from the publisher for any material that is being reproduced. This requirement applies to text, figures, and tables.

3. Secondary Publication

It is possible to republish manuscripts if the manuscripts satisfy the conditions of secondary publication of the ICMJE Recommendations (http://www.icmje.org/urm_main.html).

4. Conflict of Interest Statement

The corresponding author must inform the editor of any po-
tential conflicts of interest that could influence the authors’ interpretation of the data. Examples of potential conflicts of interest are financial support from or connections to companies, political pressure from interest groups, and academically related issues. In particular, all sources of funding applicable to the study should be explicitly stated.

5. Statement of Informed Consent and Institutional Review Board Approval
Copies of written informed consent documents should be kept for studies on human subjects. For clinical studies of human subjects, a certificate, agreement, or approval by the Institutional Review Board (IRB) of the author’s institution is required. If necessary, the editor or reviewers may request copies of these documents to resolve questions about IRB approval and study conduct.

6. Process for Managing Research and Publication Misconduct
When the journal faces suspected cases of research and publication misconduct such as redundant (duplicate) publication, plagiarism, fraudulent or fabricated data, changes in authorship, an undisclosed conflict of interest, ethical problems with a submitted manuscript, a reviewer who has appropriated an author’s idea or data, complaints against editors, and so on, the resolution process will follow the flowchart provided by the Committee on Publication Ethics (http://publicationethics.org/resources/flowcharts). The discussion and decision on the suspected cases are carried out by the Editorial Board.

7. Editorial Responsibilities
The Editorial Board will continuously work to monitor and safeguard publication ethics: guidelines for retracting articles; maintenance of the integrity of the academic record; preclusion of business needs from compromising intellectual and ethical standards; publishing corrections, clarifications, retractions, and apologies when needed; and excluding plagiarism and fraudulent data. The editors maintain the following responsibilities: responsibility and authority to reject and accept articles; avoiding any conflict of interest with respect to articles they reject or accept; promoting publication of corrections or retractions when errors are found; and preservation of the anonymity of reviewers.

4. AUTHOR QUALIFICATIONS AND LANGUAGE REQUIREMENT
1. Author Qualifications
Any researcher throughout the world can submit a manuscript if the scope of the manuscript is appropriate.

2. Language
Manuscripts should be submitted in good scientific English.

5. SUBMISSION AND PEER REVIEW PROCESS
1. Submission
All manuscripts should be submitted to kcse@kcse.org by the corresponding author.

2. Peer Review Process
Science Editing reviews all manuscripts received. A manuscript is first reviewed for its format and adherence to the aims and scope of the journal. If the manuscript meets these two criteria, it is dispatched to three investigators in the field with relevant knowledge. Assuming the manuscript is sent to reviewers, Science Editing waits to receive opinions from at least two reviewers. In addition, if deemed necessary, a review of statistics may be requested. The authors’ names and affiliations are removed during peer review. The acceptance criteria for all papers are based on the quality and originality of the research and its scientific significance. Acceptance of the manuscript is decided based on the critiques and recommended decision of the reviewers. An initial decision will normally be made within 4 weeks of receipt of a manuscript, and the reviewers’ comments are sent to the corresponding author by e-mail. The corresponding author must indicate the alterations that have been made in response to the reviewers’ comments item by item. Failure to resubmit the revised manuscript within 4 weeks of the editorial decision is regarded as a withdrawal. A final decision on acceptance/rejection for publication is forwarded to the corresponding author from the editor.

6. MANUSCRIPT PREPARATION
1. General Requirements
• The main document with manuscript text and tables should be prepared in an MS Word (.docx) or RTF file format.
• The manuscript should be double spaced on 21.6 × 27.9 cm (letter size) or 21.0 × 29.7 cm (A4) paper with 3.0 cm margins at the top, bottom, right, and left margin.
• All manuscript pages are to be numbered at the bottom consecutively, beginning with the abstract as page 1. Neither the author’s names nor their affiliations should appear on the manuscript pages.
• The authors should express all measurements according to International System (SI) units with some exceptions such as seconds, mmHg, or °C.
• Only standard abbreviations should be used. Abbrevia-
tions should be avoided in the title of the manuscript. Abbreviations should be spelled out when first used in the text—for example, extensible markup language (XML)—and the use of abbreviations should be kept to a minimum.

- The names and locations (city, state, and country only) of manufacturers should be given.
- When quoting from other sources, a reference number should be cited after the author’s name or at the end of the quotation.

Manuscript preparation is different according to the publication type, including original articles, reviews, case studies, essays, editorials, book reviews, and correspondence. Other types are also negotiable with the Editorial Board.

2. Original Articles

Original articles are reports of basic investigations. Although there is no limitation on the length of the manuscripts, the Editorial Board may abridge excessive illustrations and large tables. The manuscript for an original article should be organized in the following sequence: title page, abstract and keywords, main text (introduction, methods, results, and discussion), acknowledgments, references, tables, figure legends, and figures. The figures should be received as separate files. Maximum length: 2,500 words of text (not including the abstract, tables, figures, and references) with no more than a total of 10 tables and/or figures.

- **Title page:** The following items should be included on the title page: 1) the title of the manuscript, 2) author list, 3) each author’s affiliation, 4) the name and e-mail address of the corresponding author, 5) when applicable, the source of any research funding and a list of where and when the study has been presented in part elsewhere, and 6) a running title of fewer than 50 characters.

- **Abstract and Keywords:** The abstract should be one concise paragraph of less than 250 words in an unstructured format. Abbreviations or references are not allowed in the abstract. Up to 5 keywords should be listed at the bottom of the abstract to be used as index terms.

- **Introduction:** The purpose of the investigation, including relevant background information, should be described briefly. Conclusions should not be included in the Introduction.

- **Methods:** The research plan, materials (or subjects), and methods used should be described in that order. The names and locations (city, state, and country only) of manufacturers of equipment and software should be given. Methods of statistical analysis and criteria for statistical significance should be described.

- **Results:** The results should be presented in logical sequence in the text, tables, and figures. If resulting parameters have statistical significance, P-values should be provided, and repetitive presentation of the same data in different forms should be avoided. The results should not include material appropriate for the discussion.

- **Discussion:** Observations pertaining to the results of the research and other related work should be interpreted for readers. New and important observations should be emphasized rather than merely repeating the contents of the results. The implications of the proposed opinion should be explained along with its limits, and within the limits of the research results, and the conclusion should be connected to the purpose of the research. In a concluding paragraph, the results and their meaning should be summarized.

- **Conflict of interest:** Any potential conflict of interest that could influence the authors’ interpretation of the data, such as financial support from or connections to companies, political pressure from interest groups, or academically related issues, must be stated.

- **Acknowledgments:** All persons who have made substantial contributions, but who have not met the criteria for authorship, are to be acknowledged here. All sources of funding applicable to the study should be stated here explicitly.

- **References:** In the text, references should be cited with Arabic numerals in brackets, numbered in the order cited. In the references section, the references should be numbered and listed in order of appearance in the text. The number of references is limited to 20 for original articles. All authors of a cited work should be listed if there are six or fewer authors. The first three authors should be listed followed by “et al” if there are more than six authors. If a reference has a digital object identifier (DOI), it should be supplied. Other types of references not described below should follow The NLM Style Guide for Authors, Editors, and Publishers (http://www.nlm.nih.gov/citingmedicine).

Journal articles:

Books and book chapters:

Online sources:

Conference papers:
8. Shell ER. Sex and the scientific publisher: how journals and journalists collude (despite their best intentions) to mislead the public. Paper presented at: 2011 CrossRef Annual Member Meeting; 2011 Nov 14-15; Cambridge, MA, USA.

Scientific and technical reports:

News articles:

Dissertations:

- Tables: Tables are to be numbered in the order in which they are cited in the text. A table title should concisely describe the content of the table so that a reader can understand the table without referring to the text. Each table must be simple and typed on a separate page with its heading above it. Explanatory matter is placed in footnotes below the tabular matter and not included in the heading. All non-standard abbreviations are explained in the footnotes. Footnotes should be indicated by \(a, b, c, \ldots \). Statistical measures such as SD or SE should be identified. Vertical rules and horizontal rules between entries should be omitted.

- Figures and legends for illustrations: Figures should be numbered, using Arabic numerals, in the order in which they are cited. Each figure should be uploaded as a single image file in either uncompressed EPS, TIFF, PSD, JPEG, and PPT format over 600 dots per inch (dpi) or 3 million pixels (less than 6 megabytes). Written permission should be obtained for the use of all previously published illustrations (and copies of permission letters should be included). In the case of multiple prints bearing the same number, English letters should be used after the numerals to indicate the correct order (e.g. Fig. 1A; Fig. 2B, C).

3. Reviews
Reviews are invited by the editor and should be comprehensive analyses of specific topics. They are to be organized as follows: title page, abstract and keywords, main text (introduction, text, and conclusion), acknowledgments, references, tables, figure legends, and figures. There should be an unstructured abstract of no more than 200 words. The length of the text excluding references, tables, and figures should not exceed 5,000 words. The number of references is limited to 100.

4. Case studies
Case studies are intended to report practical cases that can be encountered during editing and publishing. Examples include interesting cases of research misconduct and publication ethics violations; experience of new and creative initiatives in publishing; and the history of a specific journal development. They are to be organized as follows: title page, abstract and keywords, main text (introduction, text, and conclusion), acknowledgments, references, tables, figure legends, and figures. There should be an unstructured abstract of 200 words maximum. The length of the text excluding references, tables, and figures should not exceed 2,500 words. The number of references is limited to 20.

5. Essays
Essays are for the dissemination of the experience and ideas of editors for colleague editors. There is no limitation on the topics if they are related to editing or publishing. They are to be organized as follows: title page, abstract and keywords, main text (introduction, text, and conclusion), acknowledgments, references, tables, figure legends, and figures. There should be an unstructured abstract equal to or less than 200 words. The length of the text excluding references, tables, and
figures should not exceed 2,500 words. The number of references is limited to 20.

6. Editorials
Editorials are invited by the editor and should be commentaries on articles published recently in the journal. Editorial topics could include active areas of research, fresh insights, and debates in all fields of journal publication. Editorials should not exceed 1,000 words, excluding references, tables, and figures. References should not exceed 10. A maximum of 3 figures including tables is allowed.

7. Book reviews
Book reviews are solicited by the editor. These will cover recently published books in the field of journal publication. The format is same as that of Editorials.

8. Correspondence
Correspondence (letters to the editor) may be in response to a published article, or a short, free-standing piece expressing an opinion. Correspondence should be no longer than 1,000 words of text and 10 references.

In reply: If the Correspondence is in response to a published article, the Editor-in-Chief may choose to invite the article’s authors to write a Correspondence Reply. Replies by authors should not exceed 500 words of text and 5 references.

9. Video Clips
Video clips can be submitted for placement on the journal website. All videos are subject to peer review and must be sent directly to the editor by e-mail. A video file submitted for consideration for publication should be in complete and final format and at as high a resolution as possible. Any editing of the video will be the responsibility of the author. Science Editing accepts all kinds of video files not exceeding 30 MB and of less than 5 minutes duration, but Quicktime, AVI, MPEG, MP4, and RealMedia file formats are recommended. A legend to accompany the video should be double-spaced in a separate file. All copyrights for video files after acceptance of the main article are automatically transferred to Science Editing.

10. Commissioned or Unsolicited Manuscripts
Unsolicited manuscript with publication types of original articles, case studies, essays, and correspondence can be submitted. Other publication types are all commissioned or invited by the Editorial Board.

Table 1 shows the recommended maximums of manuscripts according to publication type; however, these requirements are negotiable with the editor.

<table>
<thead>
<tr>
<th>Type of article</th>
<th>Abstract (word)</th>
<th>Text (word)(^a)</th>
<th>References</th>
<th>Tables & figures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original article</td>
<td>250</td>
<td>2,500</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Review</td>
<td>200</td>
<td>5,000</td>
<td>100</td>
<td>No limits</td>
</tr>
<tr>
<td>Case study</td>
<td>200</td>
<td>2,500</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Essay</td>
<td>200</td>
<td>2,500</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Editorial</td>
<td>No</td>
<td>1,000</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Book review</td>
<td>No</td>
<td>1,000</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Correspondence</td>
<td>No</td>
<td>1,000</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Letter to the editor</td>
<td>-</td>
<td>500</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>In reply</td>
<td>-</td>
<td>500</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Video clip</td>
<td>No</td>
<td>30 MB, 5 min</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

\(^a\) Maximum number of words is exclusive of the abstract, references, tables, and figure legends.

7. FINAL PREPARATION FOR PUBLICATION

1. Final Version
After the paper has been accepted for publication, the author(s) should submit the final version of the manuscript. The names and affiliations of the authors should be double-checked, and if the originally submitted image files were of poor resolution, higher resolution image files should be submitted at this time. Color images must be created as CMYK files. The electronic original should be sent with appropriate labeling and arrows. The EPS, TIFF, Adobe Photoshop (PSD), JPEG, and PPT formats are preferred for submission of digital files of photographic images. Symbols (e.g., circles, triangles, squares), letters (e.g., words, abbreviations), and numbers should be large enough to be legible on reduction to the journal’s column widths. All of the symbols must be defined in the figure caption. If the symbols are too complex to appear in the caption, they should appear on the illustration itself, within the area of the graph or diagram, not to the side. If references, tables, or figures are moved, added, or deleted during the revision process, they should be renumbered to reflect such changes so that all tables, references, and figures are cited in numeric order.

2. Manuscript Corrections
Before publication, the manuscript editor may correct the manuscript such that it meets the standard publication format. The author(s) must respond within 2 days when the manuscript editor contacts the author for revisions. If the response is delayed, the manuscript’s publication may be post-
poned to the next issue.

3. Galley Proof
The author(s) will receive the final version of the manuscript as a PDF file. Upon receipt, within 2 days, the editorial office (or printing office) must be notified of any errors found in the file. Any errors found after this time are the responsibility of the author(s) and will have to be corrected as an erratum.

8. PAGE CHARGES OR ARTICLE PROCESSING CHARGES

No page charge or article processing charge applies. There is also no submission fee.

Contact Us

Editor-in-Chief: Kihong Kim
Department of Physics, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 443-749, Korea
Tel: +82-31-219-2584, Fax: +81-31-219-1615
E-mail: khkim@ajou.ac.kr

Editorial Office: Korean Council of Science Editors
Jisoo Yoon
The Korea Science & Technology Center 2nd floor, 22 Teheran-ro 7-gil, Gangnam-gu, Seoul 135-703, Korea
Tel: +82-2-3420-1390, Fax: +82-2-563-4931
E-mail: kcse@kcse.org

NOTICE: These instructions to authors will be applied beginning with the February 2014 issue.
☐ Manuscript in MS Word (docx) or RTF format.

☐ Double-spaced typing with 11-point font.

☐ Sequence of title page, abstract and keywords, main text, acknowledgments, references, tables, figure legends, and figures. All pages numbered consecutively, starting with the abstract.

☐ Title page with article title, authors’ full name(s) and affiliation(s), corresponding author’s e-mail, running title (less than 50 characters), and acknowledgments, if any.

☐ Abstract up to 250 words for original articles and up to 200 words for reviews, essays, and features. Up to 5 keywords.

☐ All table and figure numbers are found in the text.

☐ Figures as separate files, in EPS, TIFF, Adobe Photoshop (PSD), JPEG, or PPT format.

☐ References listed in proper format. All references listed in the reference section are cited in the text and vice versa.

☐ The number of references is limited to 20 (for original articles, case studies, and essays), 100 (for reviews), or 10 (for editorials, book reviews, and letters to the editor).

☐ Covering letter signed by the corresponding author.
COPYRIGHT TRANSFER AGREEMENT

Manuscript ID

Manuscript title

Corresponding author name

Fax ______________________________ E-mail ______________________________

The authors of the article hereby agree that the Korean Council of Science Editors holds the copyright on all submitted materials and the right to publish, transmit, sell, and distribute them in the journal or other media.

Corresponding author

Print name ______________________________

Signed ______________________________ Date ______________________________

Co-authors

Print name ______________________________

Signed ______________________________ Date ______________________________

Print name ______________________________

Signed ______________________________ Date ______________________________

Print name ______________________________

Signed ______________________________ Date ______________________________

Print name ______________________________

Signed ______________________________ Date ______________________________
Manuscript ID

Manuscript title

As the corresponding author, I declare the following information regarding the specific conflicts of interest of authors of our aforementioned manuscript.

Examples of conflicts of interest include the following: source of funding, paid consultant to sponsor, study investigator funded by sponsor, employee of sponsor, board membership with sponsor, stockholder for mentioned product, any financial relationship to competitors of mentioned product, and others (please specify).

<table>
<thead>
<tr>
<th>Author</th>
<th>No conflict involved</th>
<th>Conflict (specify)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I accept the responsibility for the completion of this document and attest to its validity on behalf of all co-authors.

Corresponding author (name/signature)

Date